Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objetive: To investigate the neuroprotective effects and underlying mechanisms of salvianolic acid B (Sal B) extracted from Salvia miltiorrhiza on hippocampal CA1 neurons in mice with cerebral ischemia reperfusion injury.

Methods: Forty male National Institute of Health (NIH) mice were randomly divided into 4 groups with 10 animals each, including the sham group, the model group, the SalB group (SalB 22.5 mg/kg) and the nimodipine (Nim) group (Nim 1 mg/kg). A mouse model of cerebral ischemia and reperfusion injury was established by bilateral carotid artery occlusion for 30 min followed by 24-h reperfusion. The malondialdehyde (MDA) content, the nitric oxide synthase (NOS) activity, the superoxide dismutase (SOD) activity and total antioxidant capability (T-AOC) of the pallium were determined by biochemistry methods. The morphologic changes and Bcl-2 and Bax protein expression in hippocampal CA1 neurons were observed by using hematoxylineosin staining and immunohistochemistry staining, respectively.

Results: In the SalB group, the MDA content and the NOS activity of the pallium in cerebral ischemia-reperfusion mice significantly decreased and the SOD activity and the T-AOC significantly increased, as compared with the model group (P<0.05 or P<0.01). The SalB treatment also rescued neuronal loss (P<0.01) in the hippocampal CA1 region, strongly promoted Bcl-2 protein expression (P<0.01) and inhibited Bax protein expression (P<0.05).

Conclusions: SalB increases the level of antioxidant substances and decreases free radicals production. Moreover, it also improves Bcl-2 expression and reduces Bax expression. SalB may exert the neuroprotective effect through mitochondria-dependent pathway on hippocampal CA1 neurons in mice with cerebral ischemia and reperfusion injury and suggested that SalB represents a promising candidate for the prevention and treatment of ischemic cerebrovascular disease.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11655-014-1791-1DOI Listing

Publication Analysis

Top Keywords

hippocampal ca1
12
ca1 neurons
12
cerebral ischemia
12
ischemia reperfusion
12
salvianolic acid
8
neurons mice
8
mice cerebral
8
reperfusion injury
8
model group
8
group salb
8

Similar Publications

During a critical period of postnatal brain development, neural circuits undergo significant refinement coincident with widespread alternative splicing of hundreds of genes, which undergo altered splice site selection for the generation of isoforms essential for synaptic plasticity. Here, we reveal that neuronal activity-dependent phosphorylation of paxillin at its serine 119 (p-paxillin) acts as a molecular switch in the nucleus for the control of alternative splicing during this period. We show that following NMDA receptor activation, nuclear p-paxillin is recruited to nuclear speckles, where it interacts with splicing factors, such as U2AFs.

View Article and Find Full Text PDF

Igf2 modulates behavioral and hippocampal changes induced by chronic cocaine exposure during adolescence in mice.

Pharmacol Biochem Behav

September 2025

Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga (UMA), Málaga, 29010, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain. Electronic address:

Adolescence is a period of heightened neuroplasticity and vulnerability to environmental insults, including drug exposure. In this study, we investigated the short- and long-term behavioral effects, as well as the long-term hippocampal effects, of chronic cocaine administration during adolescence, along with the potential neuroprotective role of insulin-like growth factor 2 (IGF2) in male C57BL/6J mice. Over 21 days, mice received daily intraperitoneal injections of saline, cocaine, IGF2, or a combination of cocaine and IGF2.

View Article and Find Full Text PDF

Aberrant hippocampal subregional network associated with episodic memory decline in amnestic mild cognitive impairment.

Asian J Psychiatr

September 2025

National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Traditional Chinese Medicine Re

Background: Amnestic mild cognitive impairment (aMCI) is characterized by marked episodic memory decline. The hippocampus is essential for episodic memory, and integration of information within its subregions is central to this process. This study examined how alterations in hippocampal subregional network relate to episodic memory impairment in aMCI.

View Article and Find Full Text PDF

Although glutamatergic and GABAergic synapses are important in seizure generation, the contribution of non-synaptic ionic and electrical mechanisms to synchronization of seizure-prone hippocampal neurons remains unclear. Here, we developed a physiologically relevant model to study these mechanisms by inducing prolonged seizure-like discharges (SLDs) in hippocampal slices from male rats through modest, sustained ionic manipulations. Specifically, we reduced extracellular calcium to 0.

View Article and Find Full Text PDF

Excitatory glycine receptors control ventral hippocampus synaptic plasticity and anxiety-related behaviors.

Proc Natl Acad Sci U S A

September 2025

Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris 75005, France.

Excitatory glycine receptors (eGlyRs), composed of the glycine-binding NMDA receptor subunits GluN1 and GluN3A, have recently emerged as a novel neuronal signaling modality that challenges the traditional view of glycine as an inhibitory neurotransmitter. Unlike conventional GluN1/GluN2 NMDARs, the distribution and role of eGlyRs remain poorly understood. Here, we show that eGlyRs are highly enriched in the ventral hippocampus (VH) and confer distinct properties on this brain region.

View Article and Find Full Text PDF