Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This research uses inteins, a type of mobile genetic element, to infer patterns of gene transfer within the Halobacteria. We surveyed 118 genomes representing 26 genera of Halobacteria for intein sequences. We then used the presence-absence profile, sequence similarity and phylogenies from the inteins recovered to explore how intein distribution can provide insight on the dynamics of gene flow between closely related and divergent organisms. We identified 24 proteins in the Halobacteria that have been invaded by inteins at some point in their evolutionary history, including two proteins not previously reported to contain an intein. Furthermore, the size of an intein is used as a heuristic for the phase of the intein's life cycle. Larger size inteins are assumed to be the canonical two domain inteins, consisting of self-splicing and homing endonuclease domains (HEN); smaller sizes are assumed to have lost the HEN domain. For many halobacterial groups the consensus phylogenetic signal derived from intein sequences is compatible with vertical inheritance or with a strong gene transfer bias creating these clusters. Regardless, the coexistence of intein-free and intein-containing alleles reveal ongoing transfer and loss of inteins within these groups. Inteins were frequently shared with other Euryarchaeota and among the Bacteria, with members of the Cyanobacteria (Cyanothece, Anabaena), Bacteriodetes (Salinibacter), Betaproteobacteria (Delftia, Acidovorax), Firmicutes (Halanaerobium), Actinobacteria (Longispora), and Deinococcus-Thermus-group.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4071816PMC
http://dx.doi.org/10.3389/fmicb.2014.00299DOI Listing

Publication Analysis

Top Keywords

inteins
8
gene flow
8
gene transfer
8
intein sequences
8
intein
5
inteins indicators
4
gene
4
indicators gene
4
halobacteria
4
flow halobacteria
4

Similar Publications

Genetic Entanglement Enables Ultrastable Biocontainment in the Mammalian Gut.

ACS Synth Biol

September 2025

Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada.

Imbalances in the mammalian gut are associated with acute and chronic conditions, and using engineered probiotic strains to deliver synthetic constructs to treat them is a promising strategy. However, high rates of mutational escape and genetic instability limit the effectiveness of biocontainment circuits needed for safe and effective use. Here, we describe STALEMATE (equence enngd ulti lyered geneic buffring), a dual-layered failsafe biocontainment strategy that entangles genetic sequences to create pseudoessentiality and buffer against mutations.

View Article and Find Full Text PDF

Efficient site-specific recombination by self-activating split-Dre recombinase in mammalian cells and E. coli.

J Biol Eng

September 2025

Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199, China.

Background: Site-specific recombination (SSR) systems are essential tools for conditional genetic manipulation and are valued for their efficacy and user friendliness. However, the development of novel SSR strategies is urgently needed. This study aimed to identify a split Dre protein configuration that can self-activate.

View Article and Find Full Text PDF

Currently, inteins are some of the most popular multifunctional tools in the fields of molecular biology and biotechnology. In this study, we used the surface analysis method to identify the sites of intermolecular interactions between the N and C-parts of the Ssp DnaE intein. The obtained results were used to determine the key amino acids that define the binding energy and type of contact between intein subunits.

View Article and Find Full Text PDF

Heterodimeric protein entangling motifs: systematic discovery, feature analysis, and topology engineering.

Chem Sci

August 2025

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China

Synthesis of nontrivial protein topologies calls for genetically encoded protein entangling motifs, especially those of heterogeneous nature, to achieve structural complexity and functional relevance. Herein, we report the systematic discovery of heterodimeric entangling motifs using criteria like Gauss linking number, buried surface area and terminal distances. These motifs were analyzed to reveal their formation mechanisms (, precursor cleavage, synergistic folding and segment piercing/wrapping) and biological significance (, stability enhancement crucial for executing functions like regulation and catalysis).

View Article and Find Full Text PDF

Introduction: Chimeric antigen receptor (CAR) T-cell therapy has demonstrated remarkable efficacy against multiple myeloma (MM). However, several barriers continue to limit the overall effectiveness of this approach, such as high production costs, prolonged manufacturing timelines, safety issues, and the potential for tumor antigen escape due to selective therapeutic pressure. To overcome these challenges, innovative CAR T strategies, such as engineering modular CAR systems, are being explored.

View Article and Find Full Text PDF