98%
921
2 minutes
20
The colonization of rocks by endolithic communities is an advantageous trait, especially in environments such as hot or cold deserts, where large temperature ranges, low water availability, and high-intensity ultraviolet radiation pose a significant challenge to survival and growth. On Mars, similar conditions (albeit more extreme) prevail. In these environments, meteorite impact structures could provide refuge for endolithic organisms. Though initially detrimental to biology, an impact event into a rocky body can favorably change the availability and habitability of a substrate for endolithic organisms, which are then able to (re)colonize microfractures and pore spaces created during the impact. Here, we show how shocked gneisses from the Haughton impact structure, Devon Island, Canada, offer significant refuge for endolithic communities. A total of 28 gneiss samples representing a range of shock states were analyzed, collected from in situ, stable field locations. For each sample, the top centimeter of rock was examined with confocal scanning laser microscopy, scanning electron microscopy, and bright-field microscopy to investigate the relationship of biomass with shock level, which was found to correlate generally with increased shock state and particularly with increased porosity. We found that gneisses, which experienced pressures between 35 and 60 GPa, provide the most ideal habitat for endolithic organisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ast.2013.1100 | DOI Listing |
Sci Total Environ
October 2023
Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, Italy.
Ice free areas of continental Antarctica are among the coldest and driest environments on Earth, and yet, they support surprisingly diverse and highly adapted microbial communities. Endolithic growth is one of the key adaptations to such extreme environments and often represents the dominant life-form. Despite growing scientific interest, little is known of the mechanisms that influence the assembly of endolithic microbiomes across these harsh environments.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa; Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-59000 Lille, France. Electronic address:
Plastic pollution has become a significant environmental concern, with profound consequences for ecosystems worldwide, particularly for marine systems. Our study introduces 'plastiskin', a newly identified plastic pollution type encrusting intertidal organisms. Found on mussels and macroalgae, 'plastiskin' was composed of polypropylene and polyethylene.
View Article and Find Full Text PDFFront Fungal Biol
September 2024
U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
Over a billion years of fungal evolution has enabled representatives of this kingdom to populate almost all parts of planet Earth and to adapt to some of its most uninhabitable environments including extremes of temperature, salinity, pH, water, light, or other sources of radiation. is an endolithic fungus that inhabits rock outcrops in Antarctica. It survives extremes of cold, humidity and solar radiation in one of the least habitable environments on Earth.
View Article and Find Full Text PDFMar Environ Res
July 2024
Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa; Univ. Lille, CNRS, Univ. Littoral Côte D'Opale, IRD, UMR, 8187 - LOG - Laboratoire D'Océanologie et de Géosciences, F-59000, Lille, France; CCMAR-CIMAR - Associated Laboratory, University of Algarve, Campus
Heatwaves are increasingly severe and frequent, posing significant threats to ecosystems and human well-being. Characterised by high thermal variability, intertidal communities are particularly vulnerable to heat stress. Microbial endolithic communities that are found in marine calcifying organisms have been shown to induce shell erosion that alters shell surface colour, lowering body temperatures and increasing survival rates.
View Article and Find Full Text PDFMicron
June 2024
Institute of Geochemistry, Mineralogy, and Mineral Resources, Faculty of Science, Charles University, Albertov 6, Prague 128 00, Czech Republic.
This study utilized X-ray micro-computed tomography (micro-CT) to investigate weathered gypsum rocks which can or do serve as a rock substrate for endolithic organisms, focusing on their internal pore-fracture microstructure, estimating porosity, and quantitative comparison between various samples. Examining sections and reconstructed 3D models provides a more detailed insight into the overall structural conditions within rock fragments and the interconnectivity in pore networks, surpassing the limitations of analyzing individual 2D images. Results revealed diverse gypsum forms, cavities, fractures, and secondary features influenced by weathering.
View Article and Find Full Text PDF