98%
921
2 minutes
20
A succinylation-specific photo-cross-linking peptide probe has been developed for the NAD(+)-dependent hydrolase Sirtuin 5. The probe, not only displayed robust labelling performance with purified Sirt5, but also enabled sensitive detection of the hydrolase in the presence of large excess of cellular proteins. It is anticipated that this probe, and future generations of it, will provide useful chemical tools for the functional analysis of Sirt5 and for the recently discovered PTM of lysine succinylation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4ob00773e | DOI Listing |
ACS Biomater Sci Eng
September 2025
Department of Additive Manufacturing, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral D
Tooth extraction often leads to significant alveolar bone resorption, posing a major clinical challenge that compromises subsequent prosthodontic rehabilitation. This impaired bone regenerative capacity is primarily attributed to excessive reactive oxygen species (ROS), insufficient angiogenesis, and inadequate osteoinductive stimulation within the socket, collectively delaying the healing process. To address this, we developed an injectable dual-network hydrogel system loaded with metal-organic framework (MOF) and osteogenic growth peptide (OGP) to promote the tooth extraction socket healing.
View Article and Find Full Text PDFACS Nano
July 2025
Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
Accelerating angiogenesis, neurogenesis, and in situ stem cell recruitment at the site of bone defects is critical for bone regenerative repair. Bone marrow mesenchymal stem cell (BMSC) exosomes are cell-free therapeutic agents with bone-enhancing effects. Thymosin β4 (Tβ4) is a short peptide known for its key role in tissue repair and angiogenesis.
View Article and Find Full Text PDFACS Infect Dis
May 2025
Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province 350117, China.
There is an urgent need to develop antibiotics with new mechanisms of action for combating antibiotic-resistant bacteria, particularly against Gram-negative pathogens that severely threaten human health. Here, we introduce the rational design and comprehensive characterization of self-derived antibacterial peptides that specifically target BamA and BamD, vital components of the β-barrel assembly machine (BAM) for the folding and membrane integration of outer membrane proteins (OMPs) in Gram-negative bacteria. Among the three BamA-targeted peptides, BamA, which corresponds to an extracellular loop of BamA, exhibits remarkable bactericidal activity against OM-permeabilized cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2024
Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany.
The only known peptide-gated ion channels-FaNaCs/WaNaCs and HyNaCs-belong to different clades of the DEG/ENaC family. FaNaCs are activated by the short neuropeptide FMRFamide, and HyNaCs by Hydra RFamides, which are not evolutionarily related to FMRFamide. The FMRFamide-binding site in FaNaCs was recently identified in a cleft atop the large extracellular domain.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia; Universiti Malaya-Research Center for Biopharmaceuticals and Advanced Therapeutics (UBAT), Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia. Electronic address: syedmah
Chitosan (CS) has become a focal point of extensive research in the pharmaceutical industry due to its remarkable biodegradability, biocompatibility and sustainability. Chitosan hydrogels (CS HGs) are characterized by their viscoelasticity, flexibility and softness. The polar surfaces exhibit properties that mitigate interfacial tension between the hydrogel and body fluids.
View Article and Find Full Text PDF