Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Crack is one of the most important indicators to evaluate the quality of fresh jujube. Crack not only accelerates the decay of fresh jujube, but also diminishes the shelf life and reduces the economic value severely. In this study, the potential of hyperspectral imaging covered the range of 380 - 1030 nm was evaluated for discrimination crack feature (location and area) of fresh jujube. Regression coefficients of partial least squares regression (PLSR), successive projection analysis (SPA) and principal component analysis (PCA) based full-bands image were adopted to extract sensitive bands of crack of fresh jujube. Then least-squares support vector machine (LS-SVM) discriminant models using the selected sensitive bands for calibration set (132 samples)" were established for identification the prediction set (44 samples). ROC curve was used to judge the discriminant models of PLSR-LS-SVM, SPA-LS-SVM and PCA-LS-SVM which are established by sensitive bands of crack of fresh jujube. The results demonstrated that PLSR-LS-SVM model had an optimal effect (area=1, std=0) to discriminate crack feature of fresh jujube. Next, images corresponding to five sensitive bands (467, 544, 639, 673 and 682 nm) selected by PLSR were executed to PCA. Finally, the image of PC4 was employed to identify the location and area of crack feature through imaging processing. The results revealed that hyperspectral imaging technique combined with image processing could achieve the qualitative discrimination and quantitative identification of crack feature of fresh jujube, which provided a theoretical reference and basis for develop instrument of discrimination of crack of jujube in further work.
Download full-text PDF |
Source |
---|