98%
921
2 minutes
20
In this study, we aimed to examine the cellular and molecular mechanisms of lancemaside A from Codonopsis lanceolata (Campanulaceae) in the inflammatory responses of monocytes (U937 cells) and macrophages (RAW264.7 cells). Lancemaside A significantly suppressed the inflammatory functions of lipopolysaccharide- (LPS-) treated RAW264.7 cells by suppressing the production of nitric oxide (NO), the expression of the NO-producing enzyme inducible NO synthase (iNOS), the upregulation of the costimulatory molecule CD80, and the morphological changes induced by LPS exposure. In addition, lancemaside A diminished the phagocytic activity of RAW264.7 cells and boosted the neutralizing capacity of these cells when treated with the radical generator sodium nitroprusside (SNP). Interestingly, lancemaside A strongly blocked the adhesion activity of RAW264.7 cells to plastic culture plates, inhibited the cell-cell and cell-fibronectin (FN) adhesion of U937 cells that was triggered by treatment with an anti-β1-integrin (CD29) antibody and immobilized FN, respectively. By evaluating the activation of various intracellular signaling pathways and the levels of related nuclear transcription factors, lancemaside A was found to block the activation of inhibitor of κB kinase (IKK) and p65/nuclear factor- (NF-) κB. Taken together, our findings strongly suggest that the anti-inflammatory function of lancemaside A is the result of its strong antioxidative and IKK/NF-κB inhibitory activities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3981472 | PMC |
http://dx.doi.org/10.1155/2014/405158 | DOI Listing |
Chem Biodivers
December 2023
Institute of Chemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 10000, Vietnam.
Epaltes australis Less. has been traditionally used to treat fever and snake bites, whereas Lindera myrrha (Lour.) Merr.
View Article and Find Full Text PDFChin J Nat Med
June 2023
School of Pharmaceutical Sciences, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China. Electronic address:
Acute lung injury (ALI) is a prevalent and severe clinical condition characterized by inflammatory damage to the lung endothelial and epithelial barriers, resulting in high incidence and mortality rates. Currently, there is a lack of safe and effective drugs for the treatment of ALI. In a previous clinical study, we observed that Jinyinqingre oral liquid (JYQR), a Traditional Chinese Medicine formulation prepared by the Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, exhibited notable efficacy in treating inflammation-related hepatitis and cholecystitis in clinical settings.
View Article and Find Full Text PDFJ Hepatol
August 2014
Swiss Hepato-Pancreatico-Biliary Center, Department of Surgery, University Hospital Zürich, CH-8091 Zürich, Switzerland. Electronic address:
Background & Aims: Fasting and calorie restriction are associated with a prolonged life span and an increased resistance to stress. The protective effects of fasting have been exploited for the mitigation of ischemic organ injury, yet the underlying mechanisms remain incompletely understood. Here, we investigated whether fasting protects liver against ischemia reperfusion (IR) through energy-preserving or anti-inflammatory mechanisms.
View Article and Find Full Text PDFZhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi
October 2013
Objective: To investigate the effect of RNA interfering TLR4 signal pathway on phagocytosis of Kupffer cells.
Methods: RAW2647 mice mononuclear macrophage leukemia cells were observed. The tested group was interfered by Tlr4-mus-1567 RNA which had the best result confirmed by QPCR, cells interfered by Negative Control RNA as NC group, and normal cell as control.
J Immunol
March 2009
Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Valladolid, Spain.
Macrophages can be activated through TLRs for a variety of innate immune responses. In contrast with the wealth of data existing on TLR-dependent gene expression and resultant cytokine production, very little is known on the mechanisms governing TLR-mediated arachidonic acid (AA) mobilization and subsequent eicosanoid production. We have previously reported the involvement of both cytosolic group IVA phospholipase A(2) (cPLA(2)) and secreted group V phospholipase A(2) (sPLA(2)-V) in regulating the AA mobilization response of macrophages exposed to bacterial LPS, a TLR4 agonist.
View Article and Find Full Text PDF