Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The development of next-generation sequencing technologies has enabled rapid and cost effective whole genome sequencing. This technology has allowed researchers to shortcut time-consuming and laborious methods used to identify nucleotide mutations in forward genetic screens in model organisms. However, causal mutations must still be mapped to a region of the genome so as to aid in their identification. This can be achieved simultaneously with deep sequencing through various methods. Here we discuss alternative deep sequencing strategies for simultaneously mapping and identifying causal mutations in Caenorhabditis elegans from mutagenesis screens. Focusing on practical considerations, such as the particular mutant phenotype obtained, this review aims to aid the reader in choosing which strategy to adopt to successfully clone their mutant.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3875646 | PMC |
http://dx.doi.org/10.4161/worm.25081 | DOI Listing |