A new Enpp1 allele, Enpp1(ttw-Ham), identified in an ICR closed colony.

Exp Anim

Institute for Experimental Animals, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.

Published: October 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We recently have reported on a novel ankylosis gene that is closely linked to the Enpp1 (ectonucleotide pyrophosphatase/phosphodiesterase 1) gene on chromosome 10. Here, we have discovered novel mutant mice in a Jcl:ICR closed colony with ankylosis in the toes of the forelimbs at about 3 weeks of age. The mutant mice exhibited rigidity in almost all joints, including the vertebral column, which increased with age. These mice also showed hypogrowth with age after 16 weeks due to a loss of visceral fat, which may have been caused by poor nutrition. Histological examination and soft X-ray imaging demonstrated the ectopic ossification of various joints in the mutant mice. In particular, increased calcium deposits were observed in the joints of the toes, the carpal bones and the vertebral column. We sequenced all exons and exon/intron boundaries of Enpp1 in the normal and mutant mice, and identified a G-to-T substitution (c.259+1G>T) in the 5' splice donor site of intron 2 in the Enpp1 gene of the mutant mice. This substitution led to the skipping of exon 2 (73 bp), which generated a stop codon at position 354 bp (amino acid 62) of the cDNA (p.V63Xfs). Nucleotide pyrophosphohydrolase (NPPH) activity of ENPP1 in the mutant mice was also decreased, suggesting that Enpp1 gene function is disrupted in this novel mutant. The mutant mice reported in this study will be a valuable animal model for future studies of human osteochondral diseases and malnutrition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4160980PMC
http://dx.doi.org/10.1538/expanim.63.193DOI Listing

Publication Analysis

Top Keywords

mutant mice
28
closed colony
8
mutant
8
novel mutant
8
mice
8
vertebral column
8
enpp1 gene
8
enpp1
6
enpp1 allele
4
allele enpp1ttw-ham
4

Similar Publications

Deletion of the SHORT Syndrome Gene Prkce Results in Brain Atrophy and Cognitive and Motor Behavior Deficits in Mice.

Neurosci Bull

September 2025

Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.

The neurological manifestations of SHORT syndrome include intrauterine growth restriction, microcephaly, intellectual disability, hearing loss, and speech delay. SHORT syndrome is generally believed to be caused by PIK3R1 gene mutations and impaired PI3K-AKT activation. Recently, a clinical case report described a SHORT syndrome with a novel mutant in PRKCE gene encoding protein kinase Cε (PKCε).

View Article and Find Full Text PDF

Amongst the major histopathological hallmarks in Alzheimer's disease are intracellular neurofibrillary tangles consisting of hyperphosphorylated and aggregated Tau, synaptic dysfunction, and synapse loss. We have previously shown evidence of synaptic mitochondrial dysfunction in a mouse model of Tauopathy that overexpresses human Tau (hTau). Here, we questioned whether the levels or activity of Parkin, an E3 ubiquitin ligase involved in mitophagy, can influence Tau-induced synaptic mitochondrial dysfunction.

View Article and Find Full Text PDF

The diagnostic approaches for Hermansky-Pudlak Syndrome (HPS) include genetic sequencing, immunoblotting, electron microscopy (EM), and flow cytometry with mepacrine staining. However, these methods are often impractical for routine clinical use due to high cost, technical complexity, and limited availability. In this study, we evaluated dense granules (DGs) function in HPS mouse models using flow cytometry with mepacrine and FluoZin-3 staining.

View Article and Find Full Text PDF

The lethal yellow (A) mutation in the Raly-Agouti locus leads to ectopic expression of the agouti protein in the brain where it inhibits melanocortin receptors, causes obesity as well as alters some traits of adaptive behavior. In the present study we used the Phenomaster calorimetric module tool to compare the travel distance, food and O consumption as well as CO excretion in 12 weeks old males of C57BL/6- A and C57BL/6 mice. The A mutation did not affect travelled distance and food consumption.

View Article and Find Full Text PDF

is a facultative intracellular pathogen that has garnered attention as a potential cancer therapeutic due to its ability to induce robust cell-mediated immunity. To ensure safe clinical administration, deletion of certain genes, such as , has been used to attenuate -based vaccine strains while preserving immunogenicity. Here we explored the potential inclusion of a gene deletion to enhance the development of -based immunotherapy.

View Article and Find Full Text PDF