A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Dynamical learning and tracking of tremor and dyskinesia from wearable sensors. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We have developed and evaluated several dynamical machine-learning algorithms that were designed to track the presence and severity of tremor and dyskinesia with 1-s resolution by analyzing signals collected from Parkinson's disease (PD) patients wearing small numbers of hybrid sensors with both 3-D accelerometeric and surface-electromyographic modalities. We tested the algorithms on a 44-h signal database built from hybrid sensors worn by eight PD patients and four healthy subjects who carried out unscripted and unconstrained activities of daily living in an apartment-like environment. Comparison of the performance of our machine-learning algorithms against independent clinical annotations of disorder presence and severity demonstrates that, despite their differing approaches to dynamic pattern classification, dynamic neural networks, dynamic support vector machines, and hidden Markov models were equally effective in keeping error rates of the dynamic tracking well below 10%. A common set of experimentally derived signal features were used to train the algorithm without the need for subject-specific learning. We also found that error rates below 10% are achievable even when our algorithms are tested on data from a sensor location that is different from those used in algorithm training.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2014.2310904DOI Listing

Publication Analysis

Top Keywords

tremor dyskinesia
8
machine-learning algorithms
8
presence severity
8
hybrid sensors
8
error rates
8
dynamical learning
4
learning tracking
4
tracking tremor
4
dyskinesia wearable
4
wearable sensors
4

Similar Publications