A comparison of neuroinflammation to implanted microelectrodes in rat and mouse models.

Biomaterials

Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg., Cleveland, OH 44106, USA; Advanced Platform Technology Center, L. Stokes Cleveland VA Medical Center, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland, OH 44106-1702, USA. Elect

Published: July 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rat models have emerged as a common tool to study neuroinflammation to intracortical microelectrodes. While a number of studies have attempted to understand the factors resulting in neuroinflammation using rat models, a complete understanding of key mechanistic pathways remains elusive. Transgenic mouse models, however, could facilitate a deeper understanding of mechanistic pathways due to an ease of genetic alteration. Therefore, the goal of the present study is to compare neuroinflammation following microelectrode implantation between the rat and the mouse model. Our study suggests that subtle differences in the classic neuroinflammatory markers exist between the animal models at both two and sixteen weeks post implantation. Most notably, neuronal densities surrounding microelectrodes were significantly lower in the rat model at two weeks, while similar densities were observed between the animal models at sixteen weeks. Physiological differences between the species and slight alterations in surgical methods are likely key contributors to the observed differences. Moving forward, we propose that differences in the time course of neuroinflammation between the animal models should be considered when trying to understand and prevent intracortical microelectrode failure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4071936PMC
http://dx.doi.org/10.1016/j.biomaterials.2014.03.076DOI Listing

Publication Analysis

Top Keywords

animal models
12
rat mouse
8
mouse models
8
rat models
8
mechanistic pathways
8
models sixteen
8
sixteen weeks
8
models
7
rat
5
comparison neuroinflammation
4

Similar Publications

Alzheimer's Disease (AD) is the leading cause of dementia worldwide, with significant cognitive and behavioural impairments that devastate individuals and their families. Cohort-level findings, demonstrate the broader population-level implications of Sleep and Circadian Rhythm Disruption (SCRD) in AD and underscore the need for early interventions, emphasizing the importance of timely action. However, the mechanism remains unclear.

View Article and Find Full Text PDF

Background: Parasite antigens and plasma lipopolysaccharide (LPS) levels from luminal origin in visceral leishmaniasis (VL) patients are correlated with cellular activation and low CD4+T cell counts.

Objectives: Our aim was to verify whether Leishmania infantum infection damages the intestinal barrier and whether combination antimonial/antibiotic contributes to the reduction of LPS levels and immune activation.

Methods: Golden hamsters were grouped in: G1-uninfected; G2-infected with L.

View Article and Find Full Text PDF

Acute sleep deprivation (SD) rapidly alleviates depression, addressing a critical gap in mood disorder treatment. Rapid eye movement SD (REM SD) modulates the excitability of vasoactive intestinal peptide (VIP) neurons, influencing the synaptic plasticity of pyramidal neurons. However, the precise mechanism remains undefined.

View Article and Find Full Text PDF

IFN-β, a type I interferon, has been used as a first-line therapy for patients with multiple sclerosis (MS) for more than 30 years; however, the cellular and molecular basis of its therapeutic efficacy remains unclear. Here, we first used experimental autoimmune encephalomyelitis (EAE), a mouse model for MS, to show that the therapeutic effects of IFN-β were associated with a down-regulation of microRNA-21 (miR-21) and pathogenic T17 (pT17) cells. In vitro experiments demonstrated that genetic knockout of miR-21 directly inhibited pathogenic T17 cell differentiation.

View Article and Find Full Text PDF

Background: Peripheral nerve injury commonly results in pain and long-term disability for patients. Recovery after in-continuity stretch or crush injury remains inherently unpredictable. However, surgical intervention yields the most favorable outcomes when performed shortly after injury.

View Article and Find Full Text PDF