Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Adherent cells in culture maintain a polarized state to support movement and intercellular interactions. Nanopodia are thin, elongated, largely F-actin-negative membrane projections in endothelial and cancer cells that can be visualized through TM4SF1 (Transmembrane-4-L-six-family-1) immunofluorescence staining. TM4SF1 clusters in 100-300 μm diameter TMED (TM4SF1 enriched microdomains) containing 3 to as many as 14 individual TM4SF1 molecules. TMED are arranged intermittently along nanopodia at a regular spacing of 1 to 3 TMED per μm and firmly anchor nanopodia to matrix. This enables nanopodia to extend more than 100 μm from the leading front or trailing rear of polarized endothelial or tumor cells, and causes membrane residues to be left behind on matrix when the cell moves away. TMED and nanopodia have been overlooked because of their extreme fragility and sensitivity to temperature. Routine washing and fixation disrupt the structure. Nanopodia are preserved by direct fixation in paraformaldehyde (PFA) at 37 °C, followed by brief exposure to 0.01% Triton X-100 before staining. Nanopodia open new vistas in cell biology: they promise to reshape our understanding of how cells sense their environment, detect and identify other cells at a distance, initiate intercellular interactions at close contact, and of the signaling mechanisms involved in movement, proliferation, and cell-cell communications. The methods that are developed for studying TM4SF1-derived nanopodia may be useful for studies of nanopodia that form in other cell types through the agency of classic tetraspanins, notably the ubiquitously expressed CD9, CD81, and CD151.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4161280PMC
http://dx.doi.org/10.3791/51320DOI Listing

Publication Analysis

Top Keywords

intercellular interactions
12
nanopodia
9
membrane projections
8
movement intercellular
8
cells
5
nanopodia--thin fragile
4
fragile membrane
4
projections roles
4
cell
4
roles cell
4

Similar Publications

In the presence of chromatin bridges in cytokinesis, human cells retain actin-rich structures (actin patches) at the base of the intercellular canal to prevent chromosome breakage. Here, we show that daughter nuclei connected by chromatin bridges are under mechanical tension that requires interaction of the nuclear membrane Sun1/2-Nesprin-2 Linker of Nucleoskeleton and Cytoskeleton (LINC) complex with the actin cytoskeleton, and an intact nuclear lamina. This nuclear tension promotes accumulation of Sun1/2-Nesprin-2 proteins at the base of chromatin bridges and local enrichment of the RhoA-activator PDZ RhoGEF through PDZ-binding to cytoplasmic Nesprin-2 spectrin repeats.

View Article and Find Full Text PDF

The etiology of uveitis, choroid inflammation, is diverse, the disease is often recurrent, difficult to treat, and frequently results in disability at a young age. Studies investigating the tear fluid composition in uveitis have revealed promising biomarkers relevant for prognosis and treatment optimization. This review presents literature data on changes in the tear fluid content of proteins involved in local immune responses, intercellular interactions, proteolytic and free radical processes, nitric oxide metabolism, and other metabolic pathways in different forms of uveitis.

View Article and Find Full Text PDF

Ferroptosis is a regulated, non-apoptotic form of cell death marked by the accumulation of iron-dependent lipid peroxides. This process causes rapid rupture of the plasma membrane and the release of intracellular contents. Ferroptosis acts as an intrinsic tumor-suppressive mechanism.

View Article and Find Full Text PDF

Unveiling the effect of Fe(III) and sulfate on ammonium oxidation under anaerobic condition: interactions and extracellular electron transfer.

Water Res

August 2025

Guangzhou Landscape Architecture Group Co., Ltd., Guangzhou 510000, PR China; Guangzhou Municipal Construction Group Co., Ltd., Guangzhou 510030, PR China.

Enhanced ammonium (10.6 - 14.7%) and total inorganic nitrogen (TIN, 4.

View Article and Find Full Text PDF

Effects of fibroblasts-derived exosomal FAP in regulating EMT in epithelial cells from chronic rhinosinusitis.

Braz J Otorhinolaryngol

September 2025

Zhejiang University, College of Medicine, Department of Otolaryngology, Hangzhou City, Zhejiang Province, China.

Objectives: Exosomes play a crucial role in intercellular communication and may contribute to the development of various diseases. Nevertheless, their role in Nasal Polyps (NPs) remains poorly understood. Herein, Nasal Polyp Fibroblasts (NPF) were used to release exosomes, and epithelial cells were cocultured with NPF-derived exosomes to analyze Epithelial-Mesenchymal Transition (EMT) in Chronic Rhinosinusitis (CRS).

View Article and Find Full Text PDF