A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Nano-porous TiO2 layer using ultrafine nano-particles for the blocking layer in dye-sensitized solar cells. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A nano-porous TiO2 layer was produced by spray-deposition using ultrafine anatase nano-particles for the blocking layer for the dye-sensitized solar cells (DSCs). The microstructure and the electrochemical properties of the spray-deposited TiO2 layer were examined. The results of electrochemical properties showed that the spray-deposited TiO2 layer was capable to suppress the I3- ions diffusion to FTO substrate, reducing the electron recombination between the electrons on FTO substrate and I3- ions in electrolyte. In addition, the connection between TiO2 film and FTO substrate was improved by the TiO2 layer. Therefore, the short circuit current density and thereby the photo-to-electric energy conversion efficiency were improved by this blocking layer. The blocking effect of the porous layer was attributed to both the complicated pore structure of the spray-deposited layer and the enhanced connections between TiO2 film and FTO substrate. The low temperature characteristic of spray deposition approach indicates that it is suitable to the flexible-based DSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2014.8602DOI Listing

Publication Analysis

Top Keywords

tio2 layer
20
fto substrate
16
blocking layer
12
layer
10
nano-porous tio2
8
nano-particles blocking
8
layer dye-sensitized
8
dye-sensitized solar
8
solar cells
8
electrochemical properties
8

Similar Publications