Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
A microporous material denoted ETS-4 was used as the decontaminant agent to treat water with a low level of Hg contamination. The effectiveness of the treatment was evaluated by assessment of the efficiency of Hg removal and ecotoxicological responses. The results showed that under highly competitive conditions the removal of Hg ranged between 58 % and 73 % depending upon the initial Hg concentration, and that Hg removal was reflected in decreased toxicity to some organisms. The ecotoxicological data indicated that the bacterium Vibrio fischeri was the least sensitive organism tested, as no toxicity was observed in either pre- or post-treatment waters. Daphnia magna was highly sensitive to Hg. Mercury removal by ETS-4 was not sufficient to completely remove the toxicity of Hg to D. magna. However, it was effective in the complete reduction of toxicity for the green alga, Pseudokirchneriella subcapitata.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00128-014-1272-z | DOI Listing |