A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Solution structure of a 2:1 complex of anticancer drug XR5944 with TFF1 estrogen response element: insights into DNA recognition by a bis-intercalator. | LitMetric

Solution structure of a 2:1 complex of anticancer drug XR5944 with TFF1 estrogen response element: insights into DNA recognition by a bis-intercalator.

Nucleic Acids Res

College of Pharmacy, University of Arizona, 1703 E. Mabel Street, Tucson, AZ 85721, USA Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA The Arizona Cancer Center, Tucson, AZ 85724, USA

Published: May 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

XR5944, a deoxyribonucleic acid (DNA) bis-intercalator with potent anticancer activity, can bind the estrogen response element (ERE) sequence to inhibit estrogen receptor-α activities. This novel mechanism of action may be useful for overcoming drug resistance to currently available antiestrogen treatments, all of which target the hormone-receptor complex. Here we report the nuclear magnetic resonance solution structure of the 2:1 complex of XR5944 with the naturally occurring TFF1-ERE, which exhibits important and unexpected features. In both drug-DNA complexes, XR5944 binds strongly at one intercalation site but weakly at the second site. The sites of intercalation within a native promoter sequence appear to be context and sequence dependent. The binding of one drug molecule influences the binding site of the second. Our structures underscore the fact that the DNA binding of a bis-intercalator is directional and different from the simple addition of two single intercalation sites. Our study suggests that improved XR5944 bis-intercalators targeting ERE may be designed through optimization of aminoalkyl linker and intercalation moieties at the weak binding sites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4027214PMC
http://dx.doi.org/10.1093/nar/gku219DOI Listing

Publication Analysis

Top Keywords

solution structure
8
structure complex
8
estrogen response
8
response element
8
xr5944
5
complex anticancer
4
anticancer drug
4
drug xr5944
4
xr5944 tff1
4
tff1 estrogen
4

Similar Publications