A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Surface topography and wetting modifications of PEEK for implant applications. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polyetheretherketone (PEEK) is considered as a substitute for metallic implant materials due to its extremely low elastic modulus (3-4 GPa). Despite its good mechanical properties, PEEK exhibits a slow integration with the bone tissue due to its relatively inert surface and low biocompatibility. We introduced a dual modification method, which combines the laser and plasma surface treatments to achieve hierarchically patterned PEEK surfaces. While the plasma treatment leads to nanotopography, the laser treatment induces microstructures over the PEEK surface. On the other hand, plasma and laser treatments induce inhomogeneity in the surface chemistry in addition to the tailored surface topography. Therefore, we coated the structured PEEK surfaces with a thin alumina layer by pulsed laser deposition (PLD) to get identical surface chemistry on each substrate. Such alumina-coated PEEK surfaces are used as a model to investigate the effect of the surface topography on the wetting independent from the surface chemistry. Prepared surfaces bring advantages of enhanced wetting, multiscaled topography, proven biocompatibility (alumina layer), and low elastic modulus (PEEK as substrate), which together may trigger the use of PEEK in bone and other implant applications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10103-014-1567-7DOI Listing

Publication Analysis

Top Keywords

surface topography
12
peek surfaces
12
surface chemistry
12
surface
9
peek
9
topography wetting
8
implant applications
8
low elastic
8
elastic modulus
8
alumina layer
8

Similar Publications