Experimental lineage and functional analysis of a remotely directed peptide epoxidation catalyst.

J Am Chem Soc

Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States.

Published: April 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We describe mechanistic investigations of a catalyst (1) that leads to selective epoxidation of farnesol at the 6,7-position, remote from the hydroxyl directing group. The experimental lineage of peptide 1 and a number of resin-bound peptide analogues were examined to reveal the importance of four N-terminal residues. We examined the selectivity of truncated analogues to find that a trimer is sufficient to furnish the remote selectivity. Both 1D and 2D (1)H NMR studies were used to determine possible catalyst conformations, culminating in proposed models showing possible interactions of farnesol with a protected Thr side chain and backbone NH. The models were used to rationalize the selectivity of a modified catalyst (17) for the 6,7-position relative to an ether moiety in two related substrates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4333582PMC
http://dx.doi.org/10.1021/ja410567aDOI Listing

Publication Analysis

Top Keywords

experimental lineage
8
lineage functional
4
functional analysis
4
analysis remotely
4
remotely directed
4
directed peptide
4
peptide epoxidation
4
catalyst
4
epoxidation catalyst
4
catalyst describe
4

Similar Publications

Fanconi Anemia (FA) is a heritable syndrome characterized by DNA damage repair deficits, frequent malformations and a significantly elevated risk of bone marrow failure, leukemia, and mucosal head and neck squamous cell carcinomas (HNSCC). Hematopoietic stem cell gene therapy can prevent marrow failure and lower leukemia risk, but mucosal gene therapy to lower HNSCC risk remains untested. Major knowledge gaps include an incomplete understanding of how rapidly gene-corrected cellular lineages could spread through the oral epithelium, and which delivery parameters are critical for ensuring efficient gene correction.

View Article and Find Full Text PDF

Nutritional Symbiosis Between Ants and Their Symbiotic Microbes.

Annu Rev Entomol

September 2025

2Department of Entomology and Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA; email:

Nutritional symbioses with microorganisms have profoundly shaped the evolutionary success of ants, enabling them to overcome dietary limitations and thrive across diverse ecological niches and trophic levels. These interactions are particularly crucial for ants with specialized diets, where microbial symbionts compensate for dietary imbalances by contributing to nitrogen metabolism, vitamin supplementation, and the catabolism of plant fibers and proteins. This review synthesizes recent advances in our understanding of ant-microbe symbioses, focusing on diversity, functional roles in host nutrition, and mechanisms of transmission of symbiotic microorganisms.

View Article and Find Full Text PDF

Synovial MS4A4A correlates with inflammation and counteracts response to corticosteroids in arthritis.

Proc Natl Acad Sci U S A

September 2025

Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom.

MS4A4A belongs to the MS4A tetraspan protein superfamily and is selectively expressed by the monocyte-macrophage lineage. In this study, we aimed to evaluate the role of MS4A4A+ macrophages in rheumatoid arthritis (RA) pathogenesis and response to treatment. RNA sequencing and immunohistochemistry of synovial samples from either early treatment-naïve or active chronic RA patients showed that MS4A4A expression positively correlated with synovial inflammation.

View Article and Find Full Text PDF

Single-cell transcriptome combined with genetic tracing reveals a roadmap of fibrosis formation during proliferative vitreoretinopathy.

Proc Natl Acad Sci U S A

September 2025

Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Ocular Trauma, Laboratory of Molecular Ophthalmology, Tianjin Medical Univer

Ocular fibrosis, a severe consequence of excessive retinal wound healing, can lead to vision loss following retinal injury. Proliferative vitreoretinopathy (PVR), a common form of ocular fibrosis, is a major cause of blindness, characterized by the formation of extensive fibrous proliferative membranes. Understanding the cellular origins of PVR-associated fibroblasts (PAFs) is essential to decipher the mechanisms of ocular wound healing.

View Article and Find Full Text PDF

Hematopathological profile of plasmacytoid dendritic cell proliferation associated with non-myeloid acute leukemia.

Cytometry B Clin Cytom

September 2025

Department of Hematopathology, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, Ch

Two types of plasmacytoid dendritic cell (pDC) proliferation disease are acknowledged so far by the 5th edition of the World Health Organization Classification of Haematolymphoid Tumors: Blastic plasmacytoid dendritic cell neoplasm (BPDCN) and mature pDC proliferation associated with myeloid neoplasms (MPDCP) in which pDC is part of the malignant clone. We aim to investigate pDC proliferation associated with non-myeloid acute leukemia (AL). A retrospective analysis of all cases admitted in our center with a diagnosis of non-myeloid AL from September 2020 to April 2023 was performed to select cases with pDCs greater than 2% of bone marrow by flow cytometry (FCM).

View Article and Find Full Text PDF