A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Molecular insights into mitochondrial dysfunction in cancer-related muscle wasting. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Alterations in muscle mitochondrial bioenergetics during cancer cachexia were previously suggested; however, the underlying mechanisms are not known. So, the goal of this study was to evaluate mitochondrial phospholipid remodeling in cancer-related muscle wasting and its repercussions to respiratory chain activity and fiber susceptibility to apoptosis. An animal model of urothelial carcinoma induced by exposition to N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN) and characterized by significant body weight loss due to skeletal muscle mass decrease was used. Morphological evidences of muscle atrophy were associated to decreased respiratory chain activity and increased expression of mitochondrial UCP3, which altogether highlight the lower ability of wasted muscle to produce ATP. Lipidomic analysis of isolated mitochondria revealed a significant decrease of phosphatidic acid, phosphatidylglycerol and cardiolipin in BBN mitochondria, counteracted by increased phosphatidylcholine levels. Besides the impact on membrane fluidity, this phospholipid remodeling seems to justify, at least in part, the lower oxidative phosphorylation activity observed in mitochondria from wasted muscle and their increased susceptibility to apoptosis. Curiously, no evidences of lipid peroxidation were observed but proteins from BBN mitochondria, particularly the metabolic ones, seem more prone to carbonylation with the consequent implications in mitochondria functionality. Overall, data suggest that bladder cancer negatively impacts skeletal muscle activity specifically by affecting mitochondrial phospholipid dynamics and its interaction with proteins, ultimately leading to the dysfunction of this organelle. The regulation of phospholipid biosynthetic pathways might be seen as potential therapeutic targets for the management of cancer-related muscle wasting.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbalip.2014.03.004DOI Listing

Publication Analysis

Top Keywords

cancer-related muscle
12
muscle wasting
12
muscle
9
mitochondrial phospholipid
8
phospholipid remodeling
8
respiratory chain
8
chain activity
8
susceptibility apoptosis
8
skeletal muscle
8
wasted muscle
8

Similar Publications