Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Unlabelled: A state of insulin resistance is common to the clinical conditions of both chronic growth hormone (GH) deficiency and GH excess (acromegaly). GH has a physiological role in glucose metabolism in the acute settings of fast and exercise and is the only anabolic hormone secreted in the fasting state. We report the case of a patient in whom knowledge of this aspect of GH physiology was vital to her care. A woman with well-controlled type 1 diabetes mellitus who developed hypopituitarism following the birth of her first child required GH replacement therapy. Hours after the first dose, she developed a rapid metabolic deterioration and awoke with hyperglycaemia and ketonuria. She adjusted her insulin dose accordingly, but the pattern was repeated with each subsequent increase in her dose. Acute GH-induced lipolysis results in an abundance of free fatty acids (FFA); these directly inhibit glucose uptake into muscle, and this can lead to hyperglycaemia. This glucose-fatty acid cycle was first described by Randle et al. in 1963; it is a nutrient-mediated fine control that allows oxidative muscle to switch between glucose and fatty acids as fuel, depending on their availability. We describe the mechanism in detail.
Learning Points: THERE IS A COMPLEX INTERPLAY BETWEEN GH AND INSULIN RESISTANCE: chronically, both GH excess and deficiency lead to insulin resistance, but there is also an acute mechanism that is less well appreciated by clinicians.GH activates hormone-sensitive lipase to release FFA into the circulation; these may inhibit the uptake of glucose leading to hyperglycaemia and ketosis in the type 1 diabetic patient.The Randle cycle, or glucose-fatty acid cycle, outlines the mechanism for this acute relationship.Monitoring the adequacy of GH replacement in patients with type 1 diabetes is difficult, with IGF1 an unreliable marker.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922345 | PMC |
http://dx.doi.org/10.1530/EDM-13-0047 | DOI Listing |