Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Semiconductor nanowire kinking superstructures, particularly those with long-range structural coherence, remain difficult to fabricate. Here, we combine high-resolution electron microscopy with operando infrared spectroscopy to show why this is the case for Si nanowires and, in doing so, reveal the interplay between defect propagation and surface chemistry during ⟨211⟩ → ⟨111⟩ and ⟨211⟩ → ⟨211⟩ kinking. Our experiments show that adsorbed hydrogen atoms are responsible for selecting ⟨211⟩-oriented growth and indicate that a twin boundary imparts structural coherence. The twin boundary, only continuous at ⟨211⟩ → ⟨211⟩ kinks, reduces the symmetry of the trijunction and limits the number of degenerate directions available to the nanowire. These findings constitute a general approach for rationally engineering kinking superstructures and also provide important insight into the role of surface chemical bonding during vapor-liquid-solid synthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn500598d | DOI Listing |