A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Lateral magnetic near-field imaging of plasmonic nanoantennas with increasing complexity. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The design of many promising, newly emerging classes of photonic metamaterials and subwavelength confinement structures requires detailed knowledge and understanding of the electromagnetic near-field interactions between their building blocks. While the electric field distributions and, respectively, the electric interactions of different nanostructures can be routinely measured, for example, by scattering near-field microscopy, only recently experimental methods for imaging the magnetic field distributions became available. In this paper, we provide direct experimental maps of the lateral magnetic near-field distributions of variously shaped plasmonic nanoantennas by using hollow-pyramid aperture scanning near-field optical microscopy (SNOM). We study both simple plasmonic nanoresonators, such as bars, disks, rings and more complex antennas. For the studied structures, the magnetic near-field distributions of the complex resonators have been found to be a superposition of the magnetic near-fields of the individual constituting elements. These experimental results, explained and validated by numerical simulations, open new possibilities for engineering and characterization of complex plasmonic antennas with increased functionality.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201302926DOI Listing

Publication Analysis

Top Keywords

magnetic near-field
12
lateral magnetic
8
plasmonic nanoantennas
8
field distributions
8
near-field distributions
8
near-field
6
near-field imaging
4
plasmonic
4
imaging plasmonic
4
nanoantennas increasing
4

Similar Publications