Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We propose a mixture model for text data designed to capture underlying structure in the history of present illness section of electronic medical records data. Additionally, we propose a method to induce bias that leads to more homogeneous sets of diagnoses for patients in each cluster. We apply our model to a collection of electronic records from an emergency department and compare our results to three other relevant models in order to assess performance. Results using standard metrics demonstrate that patient clusters from our model are more homogeneous when compared to others, and qualitative analyses suggest that our approach leads to interpretable patient sub-populations when applied to real data. Finally, we demonstrate an example of our patient clustering model to identify adverse drug events.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900202 | PMC |