A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

The roles of spatial pattern and size variation in shaping height inequality of plant population. | LitMetric

The roles of spatial pattern and size variation in shaping height inequality of plant population.

Bull Math Biol

MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.

Published: February 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Game-theoretic models predict that there is an ESS height for the plant population to which all individual plants should converge. To attain this conclusion, the neighborhood factors were assumed to be equal for all the individual plants, and the spatial pattern and size variation of population were left without consideration, which is clearly not right for the scenario of plant competition. We constructed a spatially-explicit, individual-based model to explore the impacts of spatial structure and size variation on individual plant's height and population's height hierarchies under the light competition. The monomorphic equilibrium of height that all the individual plants will converge to only exists for a population growing in a strictly uniform spatial pattern with no size variation. When the spatial pattern of the population is non-uniform or there's size variation among individual plants, the critical heights that individual plants will finally reach are different from each other, and the height inequality at the end of population growth will increase when the population's spatial pattern's degree of deviation from uniform and population's size variation increase. Our results argue strongly for the importance of spatial pattern and neighborhood effects in generating the diversity of population's height growth pattern.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11538-014-9933-yDOI Listing

Publication Analysis

Top Keywords

size variation
24
spatial pattern
20
individual plants
20
pattern size
12
height inequality
8
plant population
8
variation individual
8
population's height
8
plants will
8
height
7

Similar Publications