A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A stable amorphous statin: solid-state NMR and dielectric studies on dynamic heterogeneity of simvastatin. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Statins have been widely used as cholesterol-lowering agents. However, low aqueous solubility of crystalline statins and, consequently, reduced biovailability require seeking for alternative forms and formulations to ensure an accurate therapeutic window. The objective of the present study was to evaluate the stability of amorphous simvastatin by probing molecular dynamics using two nondestructive techniques: solid-state NMR and dielectric relaxation spectroscopy. Glassy simvastatin was obtained by the melt quench technique. (13)C cross-polarization/magic-angle-spinning (CP/MAS) NMR spectra and (1)H MAS NMR spectra were obtained from 293 K up to 333 K (Tg ≈ 302 K). The (13)C spin-lattice relaxation times in the rotating frame, T1ρ, were measured as a function of temperature, and the correlation time and activation energy data obtained for local motions in different frequency scales revealed strong dynamic heterogeneity, which appears to be essential for the stability of the amorphous form of simvastatin. In addition, the (1)H MAS measurements presented evidence for mobility of the hydrogen atoms in hydroxyl groups which was assigned to noncooperative secondary relaxations. The complex dielectric permittivity of simvastatin was monitored in isochronal mode at five frequencies (from 0.1 to 1000 kHz), by carrying out a heating/cooling cycle allowing to obtain simvastatin in the supercooled and glassy states. The results showed that no dipolar moment was lost due to immobilization, thus confirming that no crystallization had taken place. Complementarily, the present study focused on the thermal stability of simvastatin using thermogravimetric analysis while the thermal events were followed up by differential scanning calorimetry and dielectric relaxation spectroscopy. Overall, the results confirm that the simvastatin in the glass form reveals a potential use in the solid phase formulation on the pharmaceutical industry.

Download full-text PDF

Source
http://dx.doi.org/10.1021/mp400455rDOI Listing

Publication Analysis

Top Keywords

solid-state nmr
8
nmr dielectric
8
dynamic heterogeneity
8
simvastatin
8
stability amorphous
8
dielectric relaxation
8
relaxation spectroscopy
8
nmr spectra
8
stable amorphous
4
amorphous statin
4

Similar Publications