A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Modes of direct modulation by taurine of the glutamate NMDA receptor in rat cortex. | LitMetric

Modes of direct modulation by taurine of the glutamate NMDA receptor in rat cortex.

Eur J Pharmacol

Department of Physiology, Pharmacology & Neuroscience, Sophie Davis School of Biomedical Education at CCNY, City University of New York, New York, NY 10031, USA; Neuroscience Subprogram, Doctoral Programs in Biology, Graduate Center of the City University of New York, NY 10016, USA. Electronic addre

Published: April 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Taurine is an endogenous brain substance with robust neuromodulatory and possible neuroprotective properties. Though other mechanisms of action have been reported, its interaction with the NMDA (N-methyl-D-aspartic acid) receptor is undocumented. We investigated taurine's interaction with the NMDA receptor using electrophysiological and receptor binding approaches. The effects of taurine on field potential responses in layer-5 of prelimbic cortex in rat brain slices evoked by single-pulse electrical stimulation of ventral medial cortex were determined. Picrotoxin (80 µM) was present in all control and drug solutions to block the Cl(-) channels associated with the GABA-, taurine-, and strychnine sensitive glycine- receptors. A typical response consisted of an NBQX (2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo-[f]-quinoxaline-7-sulfonamide)-sensitive negative wave (N1) followed by a positive wave (P1) and a broad negativity (N2), both sensitive to dl-AP5 (dl-2-amino-5-phosphonopentanoic acid) inhibition. Taurine exerted a 41.5 ± 8.3% (n = 9) voltage reduction within the late phase of N2. This taurine action was prevented by 100 µM AP5, but not by 10 µM nifedipine, supporting a direct modulation of NMDA receptor function by taurine, without requiring the involvement of the L-type Ca(2+) channel. Taurine did not alter specific [(3)H] MK-801 binding to rat cortical membranes in the presence of glycine or glutamate; but inhibited spermine-potentiated specific [(3)H] MK-801 binding to NMDA receptors by 15-20% in the presence of glycine. In addition, taurine reduced the apparent affinity of the NMDA receptor for glycine (in the presence of spermine) by 10-fold. These results show that taurine interacts directly with the NMDA receptor by multiple mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2014.01.025DOI Listing

Publication Analysis

Top Keywords

nmda receptor
20
taurine
9
direct modulation
8
interaction nmda
8
specific [3h]
8
[3h] mk-801
8
mk-801 binding
8
presence glycine
8
nmda
7
receptor
7

Similar Publications