A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

ROMO1 is an essential redox-dependent regulator of mitochondrial dynamics. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The dynamics of mitochondria undergoing fusion and fragmentation govern many mitochondrial functions, including the regulation of cell survival. Although the machinery that catalyzes fusion and fragmentation has been well described, less is known about the signaling components that regulate these phenomena. We performed a genome-wide RNA interference (RNAi) screen and identified reactive oxygen species modulator 1 (ROMO1) as a redox-regulated protein required for mitochondrial fusion and normal cristae morphology. We showed that oxidative stress promoted the formation of high-molecular weight ROMO1 complexes and that knockdown of ROMO1 promoted mitochondrial fission. ROMO1 was essential for the oligomerization of the inner membrane guanosine triphosphatase (GTPase) OPA1, which is required to maintain the integrity of cristae junctions. As a consequence, cells lacking ROMO1 displayed fragmented mitochondria and loss of cristae, causing impaired mitochondrial respiration and increased sensitivity to cell death stimuli. Together, our data identify ROMO1 as a critical molecular switch that couples metabolic stress and mitochondrial morphology, linking mitochondrial fusion to cell survival.

Download full-text PDF

Source
http://dx.doi.org/10.1126/scisignal.2004374DOI Listing

Publication Analysis

Top Keywords

romo1 essential
8
fusion fragmentation
8
cell survival
8
mitochondrial fusion
8
romo1
7
mitochondrial
7
essential redox-dependent
4
redox-dependent regulator
4
regulator mitochondrial
4
mitochondrial dynamics
4

Similar Publications