Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The long-term goal of our study is to understand the internal organization of the octocoral stem canals, as well as their physiological and functional role in the growth of the colonies, and finally to assess the influence of climatic changes on this species. Here we focus on imaging tools, namely acquisition and processing of three-dimensional high-resolution images, with emphasis on automated extraction of canal pathways. Our aim was to evaluate the feasibility of the whole process, to point out and solve - if possible - technical problems related to the specimen conditioning, to determine the best acquisition parameters and to develop necessary image-processing algorithms. The pathways extracted are expected to facilitate the structural analysis of the colonies, namely to help observing the distribution, formation and number of canals along the colony. Five volumetric images of Muricea muricata specimens were successfully acquired by X-ray computed tomography with spatial resolution ranging from 4.5 to 25 micrometers. The success mainly depended on specimen immobilization. More than [Formula: see text] of the canals were successfully detected and tracked by the image-processing method developed. Thus obtained three-dimensional representation of the canal network was generated for the first time without the need of histological or other destructive methods. Several canal patterns were observed. Although most of them were simple, i.e. only followed the main branch or "turned" into a secondary branch, many others bifurcated or fused. A majority of bifurcations were observed at branching points. However, some canals appeared and/or ended anywhere along a branch. At the tip of a branch, all canals fused into a unique chamber. Three-dimensional high-resolution tomographic imaging gives a non-destructive insight to the coral ultrastructure and helps understanding the organization of the canal network. Advanced image-processing techniques greatly reduce human observer's effort and provide methods to both visualize and quantify the structures of interest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900427PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085557PLOS

Publication Analysis

Top Keywords

canal pathways
8
three-dimensional high-resolution
8
canal network
8
canal
5
canals
5
semi-automatic method
4
method extract
4
extract canal
4
pathways micro-ct
4
micro-ct images
4

Similar Publications

Trichoderma species exhibit remarkable versatility in adaptability and in occupying habitats with lifestyles ranging from mycoparasitism and saprotrophy to endophytism. In this study, we present the first high-quality whole-genome assembly and annotation of T. lixii using Illumina HiSeq technology to explore the mechanisms of endophytic lifestyle and plant colonization.

View Article and Find Full Text PDF

Functional reconstruction of large mandibular defects, especially in young patients, presents a significant clinical challenge. The ideal approach should not only restore skeletal contour but also address nerve deficits and facilitate final occlusal rehabilitation, all while minimizing morbidity. This report describes a comprehensive, multi-staged strategy for such a case.

View Article and Find Full Text PDF

Background: Prostate cancer is one of the most common malignancies in males worldwide. Serum prostate-specific antigen is a frequently employed biomarker in the diagnosis and risk stratification of prostate cancer; however, it is known for its low predictive accuracy for disease progression. New prognostic biomarkers are needed to distinguish aggressive prostate cancer from low-risk disease.

View Article and Find Full Text PDF

Aim: Prickle planar cell polarity (PCP) protein 2 (Prickle2) encodes a homologue of Drosophila prickle and is involved in the non-canonical Wnt/PCP signalling pathway. However, its exact role in dentinogenesis remains unclear. Dentinogenesis, a key process in tooth morphogenesis, involves the patterned arrangement of odontoblasts and the formation of dentine matrix along the pulp cavity.

View Article and Find Full Text PDF

While mercury (Hg) concentration and isotope analyses play pivotal roles in understanding contamination levels and Hg sources, complex hydrodynamics often obscure Hg transport pathways from source to sink. We applied hydrodynamic modeling with Hg stable isotopes to unravel source-specific contamination processes and propose effective management strategies in an estuarine system (Yeongil Bay) impacted by Hg-contaminated riverine input (Hyeongsan River) in Korea. Sediment isotope data revealed contributions of three sources: legacy Hg from the river, regional background Hg, and atmospheric Hg sources.

View Article and Find Full Text PDF