Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
An explicit all-atom computational model for amorphous poly(lactide) (PLA) was developed. Molecular dynamics simulations of PLA glasses were conducted to explore various molecular interactions and predict certain physical properties. The density of a newly formed PLA glass aged for 100 ns at 298 K was 1.23 g/cm(3), close to the experimental range (1.24-1.25 g/cm(3)). The glass transition temperature (Tg = 364 K) was higher than experimental values because of the fast cooling rate (0.03 K/ps) in the simulation. The solubility parameter (20.6 MPa(1/2)) compared favorably to the literature. The water sorption isotherm obtained by relating the excess chemical potential of water in PLA to the Henry's law constant for water sorption was close to the experiment. At 0.6% (w/w), water molecules localize next to polar ester groups in PLA because of hydrogen bonding. Local mobility in PLA as characterized by the atomic fluctuation was sharply reduced near the Tg , decreasing further with aging at 298 K. The non-Einsteinian diffusion of water was found to correlate with the rotational β-relaxation of PLA C=O groups at 298 K. A relaxation-diffusion coupling model proposed recently by the authors gave a diffusion coefficient (1.3 × 10(-8) cm(2) /s at 298 K) which is comparable to reported experimental values.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jps.23855 | DOI Listing |