A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Fast forward selection for generalized estimating equations with a large number of predictor variables. | LitMetric

Fast forward selection for generalized estimating equations with a large number of predictor variables.

Biometrics

School of Mathematics and Statistics and Evolution & Ecology Research Centre, The University of New South Wales, NSW 2052, Australia.

Published: March 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We propose a new variable selection criterion designed for use with forward selection algorithms; the score information criterion (SIC). The proposed criterion is based on score statistics which incorporate correlated response data. The main advantage of the SIC is that it is much faster to compute than existing model selection criteria when the number of predictor variables added to a model is large, this is because SIC can be computed for all candidate models without actually fitting them. A second advantage is that it incorporates the correlation between variables into its quasi-likelihood, leading to more desirable properties than competing selection criteria. Consistency and prediction properties are shown for the SIC. We conduct simulation studies to evaluate the selection and prediction performances, and compare these, as well as computational times, with some well-known variable selection criteria. We apply the SIC on a real data set collected on arthropods by considering variable selection on a large number of interactions terms consisting of species traits and environmental covariates.

Download full-text PDF

Source
http://dx.doi.org/10.1111/biom.12118DOI Listing

Publication Analysis

Top Keywords

variable selection
12
selection criteria
12
selection
8
forward selection
8
large number
8
number predictor
8
predictor variables
8
sic
5
fast forward
4
selection generalized
4

Similar Publications