A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Seasonal and spatial variation in dithiothreitol (DTT) activity of quasi-ultrafine particles in the Los Angeles Basin and its association with chemical species. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A year-long sampling campaign of quasi-ultrafine particles (dp < 0.25 μm) was conducted at 10 distinct sites representing source, urban and/or near-freeway, rural receptor and desert locations across the Los Angeles air basin. Redox activity of the PM samples was measured by means of the Dithiothreitol (DTT) assay and detailed chemical analysis was performed to measure the concentrations of chemical species. DTT activity per unit air volume and unit PM mass (expressed in nmol min(-1) m(-3) and nmol/min/μg PM, respectively) showed similar trends across sites and seasons. DTT activity was generally higher during cold seasons (winter and fall) compared to warm seasons (summer and spring). Noticeable peaks were observed at urban near-freeway locations representing "source" sites impacted by fresh traffic emissions. Regression analysis indicated strong association (R > 0.7) between the DTT activity and the concentrations of carbonaceous species (OC, EC, WSOC and WIOC) across all seasons and strong winter-time correlations with organic tracers of primary vehicular emissions including polycyclic aromatic hydrocarbons (PAHs), alkanes, hopanes and steranes. Strong correlations were also observed, particularly during winter, between DTT activity and transition metals (e.g., Cr, Mn, V, Fe, Cu, Cd and Zn), which share similar vehicular sources with primary organics. A multivariate linear regression analysis indicated that the variability in DTT activity is best explained by the variability in concentrations of WSOC, WIOC, EC and hopanes. Combined contributions from these species explained 88% of the DTT activity. The appearance of WSOC as a typical tracer of secondary organic aerosol, along with EC, WIOC and hopanes, all markers of emissions from primary combustion sources, emphasizes the contributions of both primary and secondary sources to the overall oxidative potential of quasi-ultrafine particles. Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of Environmental Science and Health, Part A, to view the supplemental file.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10934529.2014.854677DOI Listing

Publication Analysis

Top Keywords

dtt activity
28
quasi-ultrafine particles
12
dtt
8
dithiothreitol dtt
8
activity
8
los angeles
8
chemical species
8
regression analysis
8
analysis indicated
8
wsoc wioc
8

Similar Publications