Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Adrenomedullin is a neuropeptide known for its cardiovascular activities and anti-inflammatory effects. Here, we investigated the effect of adrenomedullin in a model of experimental autoimmune encephalomyelitis (EAE) that mirrors chronic progressive multiple sclerosis. A short-term systemic treatment with adrenomedullin reduced clinical severity and incidence of EAE, the appearance of inflammatory infiltrates in spinal cord and the subsequent demyelination and axonal damage. This effect was exerted at multiple levels affecting both early and late events of the disease. Adrenomedullin decreased the presence/activation of encephalitogenic Th1 and Th17 cells and down-regulated several inflammatory mediators in peripheral lymphoid organs and central nervous system. Noteworthy, adrenomedullin inhibited the production by encephalitogenic cells of osteopontin and of Granulocyte Macrophage Colony-Stimulating Factor (GM-CSF), two critical cytokines in the development of EAE. At the same time, adrenomedullin increased the number of IL-10-producing regulatory T cells with suppressive effects on the progression of EAE. Furthermore, adrenomedullin generated dendritic cells with a semi-mature phenotype that impaired encephalitogenic responses in vitro and in vivo. Finally, adrenomedullin regulated glial activity and favored an active program of neuroprotection/regeneration. Therefore, the use of adrenomedullin emerges as a novel multimodal therapeutic approach to treat chronic progressive multiple sclerosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951662 | PMC |
http://dx.doi.org/10.1016/j.bbi.2013.11.021 | DOI Listing |