98%
921
2 minutes
20
Background: The purposes were to determine the following: 1) the threshold between 2500-4300 m at which simple and complex military task performance is degraded; 2) whether the degree of degradation, if any, is related to changes in altitude illness, fatigue, or sleepiness at a given altitude; and 3) whether the level of hypoxemia, independent of altitude, affects simple and complex military task performance.
Methods: There were 57 lowlanders (mean +/- SD; 22 +/- 3 yr; 79 +/- 12 kg) who were exposed to either 2500 m (N = 17), 3000 m (N = 12), 3500 m (N = 11), or 4300 m (N = 17). Disassembly and reassembly of a weapon (DsAs, simple), rifle marksmanship (RM, complex), acute mountain sickness (AMS), fatigue, sleepiness, and arterial oxygen saturation (SaO2) were measured at sea level (SL), and after 8 h (HA8) and 30 h (HA30) of exposure to each altitude.
Results: DsAs did not change from SL to HA8 or HA30 at any altitude. RM speed (target/min) decreased from SL (20 +/- 1.5) to HA8 (17 +/- 1.5) and HA30 (17 +/- 3) only at 4300 m. AMS, fatigue, and sleepiness were increased and SaO2 was decreased at 2500 m and above. Increased sleepiness was the only variable associated with decreased RM speed at 4300 m (r = -0.67; P = 0.004). Greater hypoxemia, independent of altitude, was associated with greater decrements in RM speed (r = 0.27; P = 0.04).
Conclusions: Simple psychomotor performance was not affected by exposures between 2500-4300 m; however, complex psychomotor performance (i.e., RM speed) was degraded at 4300 m most likely due to increased sleepiness. Greater levels of hypoxemia were associated with greater decrements in RM speed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3357/asem.3245.2013 | DOI Listing |
Cereb Cortex
August 2025
Department of Psychology, University of Milano-Bicocca, Milan, Italy.
Semantic composition allows us to construct complex meanings (e.g., "dog house", "house dog") from simpler constituents ("dog", "house").
View Article and Find Full Text PDFOrg Biomol Chem
September 2025
Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
Zinc(II) bis(triazolyl)(pyridyl)amine (Zn(BTPA)) complexes on the end of α-amino-iso-butyric acid (Aib) foldamers are able to transfer chirality from bound anions to the helical foldamer body. Zn(BTPA) could be obtained by simple synthetic methodology that allowed a range of functional groups to be installed around the binding site, exemplified with a fluorophore, a macrocyclic bridge and Aib itself. Changing functional group did not prevent chiral ligands from controlling foldamer conformation, although differences in complexation kinetics and equilibria were observed.
View Article and Find Full Text PDFAnal Chem
September 2025
School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
Abnormal glycosylation is widespread in cancer, and the overexpression of glycoantigens is a manifestation of glycosylation abnormalities. Tn antigen, sTn antigen, and T antigen are known as tumor-associated glycoantigens, and their expression varies in different tumors or subtypes of the same tumor. Therefore, simultaneous detection of these three glycoantigens is of great significance for the diagnosis of tumors.
View Article and Find Full Text PDFOrg Biomol Chem
September 2025
Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
Herein, we report a simple, microwave-assisted and open-air strategy for gram-scale C3-alkylation of indoles, along with an economically viable strategy for epoxide opening followed by α-alkylation, using the [RuCl(bpy){-PhPCHCONCHPPh-}-κ-(,,,,)] complex (hereafter referred to as [PNP-Ru]). This transformation proceeds an alcohol dehydrogenation (oxidation) mechanism, with water being the sole byproduct in both reactions, underscoring the environmentally benign and sustainable nature of the methodology. The protocol efficiently delivers both mono- and bis(indolyl) derivatives in good to excellent yields.
View Article and Find Full Text PDFComput Biol Med
September 2025
Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden; School of Medical Sciences and Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine
Functional magnetic resonance imaging (fMRI) is a pivotal tool for mapping neuronal activity in the brain. Traditionally, the observed hemodynamic changes are assumed to reflect the activity of the most common neuronal type: excitatory neurons. In contrast, recent experiments, using optogenetic techniques, suggest that the fMRI-signal could reflect the activity of inhibitory interneurons.
View Article and Find Full Text PDF