Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A series of mini-antibodies (monovalent and bivalent Fabs) targeting the conserved internal trimeric coiled-coil of the N-heptad repeat (N-HR) of HIV-1 gp41 has been previously constructed and reported. Crystal structures of two closely related monovalent Fabs, one (Fab 8066) broadly neutralizing across a wide panel of HIV-1 subtype B and C viruses, and the other (Fab 8062) non-neutralizing, representing the extremes of this series, were previously solved as complexes with 5-Helix, a gp41 pre-hairpin intermediate mimetic. Binding of these Fabs to covalently stabilized chimeric trimers of N-peptides of HIV-1 gp41 (named (CCIZN36)3 or 3-H) has now been investigated using X-ray crystallography, cryo-electron microscopy, and a variety of biophysical methods. Crystal structures of the complexes between 3-H and Fab 8066 and Fab 8062 were determined at 2.8 and 3.0 Å resolution, respectively. Although the structures of the complexes with the neutralizing Fab 8066 and its non-neutralizing counterpart Fab 8062 were generally similar, small differences between them could be correlated with the biological properties of these antibodies. The conformations of the corresponding CDRs of each antibody in the complexes with 3-H and 5-Helix are very similar. The adaptation to a different target upon complex formation is predominantly achieved by changes in the structure of the trimer of N-HR helices, as well as by adjustment of the orientation of the Fab molecule relative to the N-HR in the complex, via rigid-body movement. The structural data presented here indicate that binding of three Fabs 8062 with high affinity requires more significant changes in the structure of the N-HR trimer compared to binding of Fab 8066. A comparative analysis of the structures of Fabs complexed to different gp41 intermediate mimetics allows further evaluation of biological relevance for generation of neutralizing antibodies, as well as provides novel structural insights into immunogen design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3820714PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0078187PLOS

Publication Analysis

Top Keywords

fab 8066
16
hiv-1 gp41
12
fab 8062
12
complexes neutralizing
8
internal trimeric
8
trimeric coiled-coil
8
crystal structures
8
fab
8
structures complexes
8
complexes 3-h
8

Similar Publications

Nipah virus (NiV) is a highly pathogenic paramyxovirus capable of causing severe respiratory and neurologic disease in humans. Currently, there are no licensed vaccines or therapeutics against NiV, underscoring the urgent need for the development of countermeasures. The NiV surface-displayed glycoproteins, NiV-G and NiV-F, mediate host cell attachment and fusion, respectively, and are heavily targeted by host antibodies.

View Article and Find Full Text PDF

We previously reported a series of antibodies, in fragment antigen binding domain (Fab) formats, selected from a human non-immune phage library, directed against the internal trimeric coiled-coil of the N-heptad repeat (N-HR) of HIV-1 gp41. Broadly neutralizing antibodies from that series bind to both the fully exposed N-HR trimer, representing the pre-hairpin intermediate state of gp41, and to partially-exposed N-HR helices within the context of the gp41 six-helix bundle. While the affinities of the Fabs for pre-hairpin intermediate mimetics vary by only 2 to 20-fold between neutralizing and non-neutralizing antibodies, differences in inhibition of viral entry exceed three orders of magnitude.

View Article and Find Full Text PDF

Complexes of neutralizing and non-neutralizing affinity matured Fabs with a mimetic of the internal trimeric coiled-coil of HIV-1 gp41.

PLoS One

July 2014

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America.

A series of mini-antibodies (monovalent and bivalent Fabs) targeting the conserved internal trimeric coiled-coil of the N-heptad repeat (N-HR) of HIV-1 gp41 has been previously constructed and reported. Crystal structures of two closely related monovalent Fabs, one (Fab 8066) broadly neutralizing across a wide panel of HIV-1 subtype B and C viruses, and the other (Fab 8062) non-neutralizing, representing the extremes of this series, were previously solved as complexes with 5-Helix, a gp41 pre-hairpin intermediate mimetic. Binding of these Fabs to covalently stabilized chimeric trimers of N-peptides of HIV-1 gp41 (named (CCIZN36)3 or 3-H) has now been investigated using X-ray crystallography, cryo-electron microscopy, and a variety of biophysical methods.

View Article and Find Full Text PDF

Structural basis of HIV-1 neutralization by affinity matured Fabs directed against the internal trimeric coiled-coil of gp41.

PLoS Pathog

November 2010

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America.

The conserved internal trimeric coiled-coil of the N-heptad repeat (N-HR) of HIV-1 gp41 is transiently exposed during the fusion process by forming a pre-hairpin intermediate, thus representing an attractive target for the design of fusion inhibitors and neutralizing antibodies. In previous studies we reported a series of broadly neutralizing mini-antibodies derived from a synthetic naïve human combinatorial antibody library by panning against a mimetic of the trimeric N-HR coiled coil, followed by affinity maturation using targeted diversification of the CDR-H2 loop. Here we report crystal structures of the N-HR mimetic 5-Helix with two Fabs that represent the extremes of this series: Fab 8066 is broadly neutralizing across a wide panel of B and C type HIV-1 viruses, whereas Fab 8062 is non-neutralizing.

View Article and Find Full Text PDF

Previously we reported a broadly HIV-1 neutralizing mini-antibody (Fab 3674) of modest potency that was derived from a human non-immune phage library by panning against the chimeric gp41-derived construct N(CCG)-gp41. This construct presents the N-heptad repeat of the gp41 ectodomain as a stable, helical, disulfide-linked trimer that extends in helical phase from the six-helix bundle of gp41. In this paper, Fab 3674 was subjected to affinity maturation against the N(CCG)-gp41 antigen by targeted diversification of the CDR-H2 loop to generate a panel of Fabs with diverse neutralization activity.

View Article and Find Full Text PDF