Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Light-emitting diodes (LEDs) become an attractive alternative to conventional light sources due to high efficiency and long lifetime. However, different material properties between GaN and sapphire cause several problems such as high defect density in GaN, serious wafer bowing, particularly in large-area wafers, and poor light extraction of GaN-based LEDs. Here, we suggest a new growth strategy for high efficiency LEDs by incorporating silica hollow nanospheres (S-HNS). In this strategy, S-HNSs were introduced as a monolayer on a sapphire substrate and the subsequent growth of GaN by metalorganic chemical vapor deposition results in improved crystal quality due to nano-scale lateral epitaxial overgrowth. Moreover, well-defined voids embedded at the GaN/sapphire interface help scatter lights effectively for improved light extraction, and reduce wafer bowing due to partial alleviation of compressive stress in GaN. The incorporation of S-HNS into LEDs is thus quite advantageous in achieving high efficiency LEDs for solid-state lighting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3826094PMC
http://dx.doi.org/10.1038/srep03201DOI Listing

Publication Analysis

Top Keywords

high efficiency
12
light-emitting diodes
8
silica hollow
8
hollow nanospheres
8
wafer bowing
8
light extraction
8
efficiency leds
8
gan
5
leds
5
strained efficient
4

Similar Publications

Accurate determination of the parameters of each high purity germanium, HPGe detectors ensure the precision of quantitative results obtained from spectrum analysis. This study presents a comprehensive performance evaluation and long-term quality control assessment of a high-purity germanium (HPGe) gamma spectrometry system that has been operational for over 15 years. Key spectrometric measures were recorded, including energy resolution, peak shape ratios, asymmetry, peak-to-Compton ratio, relative efficiency, electronic noise, minimum detectable activity (MDA), and repeatability and reproducibility of the system.

View Article and Find Full Text PDF

Ultra-High Zinc Utilization Enabled by MXene Anode for Flexible Dual-Plating Zn-Br Microbatteries.

J Phys Chem Lett

September 2025

College of Materials Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, P. R. China.

Aqueous zinc-ion microbatteries exhibit promising prospects for wearable devices due to their high safety and cost-effectiveness but face challenges such as low energy density and short cycle life. To address these challenges, a dual-plating flexible Zn-Br microbattery was developed using freestanding MXene films as a zinc metal free anode. The MXene anode retains no redundant Zn, as Zn from the electrolyte undergoes deposition/stripping reactions on its substrate, thereby eliminating the necessity for excess zinc.

View Article and Find Full Text PDF

Potassium Hydroxide as a Cost-Effective Catalyst for Broad-Scope Silylation with TMSCF.

J Org Chem

September 2025

Faculty of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego St. 8, 61-614 Poznań, Poland; https://www.kucinskilab.com.

The development of efficient and broadly applicable silylation methodologies remains a central goal in synthetic organic and organosilicon chemistry. Traditionally, silylation reactions employ chlorosilanes or hydrosilanes, often necessitating the use of moisture-sensitive and corrosive reagents. Herein, we report a high-yielding, operationally simple, rapid, and economical silylation platform based on trifluoromethyltrimethylsilane (TMSCF) and catalytic potassium hydroxide (KOH).

View Article and Find Full Text PDF

The calculation of the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap for chemical molecules is computationally intensive using quantum mechanics (QM) methods, while experimental determination is often costly and time-consuming. Machine Learning (ML) offers a cost-effective and rapid alternative, enabling efficient predictions of HOMO-LUMO gap values across large data sets without the need for extensive QM computations or experiments. ML models facilitate the screening of diverse molecules, providing valuable insights into complex chemical spaces and integrating seamlessly into high-throughput workflows to prioritize candidates for experimental validation.

View Article and Find Full Text PDF

Construction of Zeolite Framework-Anchored Rh-(O-Zn) Sites for Ethylene Hydroformylation.

J Am Chem Soc

September 2025

National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Zeolite-confined Rh-based catalysts have emerged as promising heterogeneous candidates for olefin hydroformylation. However, they face challenges of reactant- and product-induced Rh leaching and aggregation. Herein, zeolite framework-anchored Rh-(O-Zn) sites were designed and are shown to have remarkable activity and stability for gas-phase ethylene hydroformylation.

View Article and Find Full Text PDF