Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The immunological synapse formed by a T lymphocyte on the surface of a target cell contains a peripheral ring of filamentous actin (F-actin) that promotes adhesion and facilitates the directional secretion of cytokines and cytolytic factors. We show that growth and maintenance of this F-actin ring is dictated by the annular accumulation of phosphatidylinositol trisphosphate (PIP3) in the synaptic membrane. PIP3 functions in this context by recruiting the exchange factor Dock2 to the periphery of the synapse, where it drives actin polymerization through the Rho-family GTPase Rac. We also show that synaptic PIP3 is generated by class IA phosphoinositide 3-kinases that associate with T cell receptor microclusters and are activated by the GTPase Ras. Perturbations that inhibit or promote PIP3-dependent F-actin remodeling dramatically affect T cell cytotoxicity, demonstrating the functional importance of this pathway. These results reveal how T cells use lipid-based signaling to control synaptic architecture and modulate effector responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3832928PMC
http://dx.doi.org/10.1084/jem.20131324DOI Listing

Publication Analysis

Top Keywords

immunological synapse
8
annular pip3
4
pip3 accumulation
4
accumulation controls
4
controls actin
4
actin architecture
4
architecture modulates
4
modulates cytotoxicity
4
cytotoxicity immunological
4
synapse immunological
4

Similar Publications

Ion channels in NK cells: signaling and functions.

J Leukoc Biol

September 2025

Laboratory of Immunobiology and Ionic Transport Regulation, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, Villa de San Sebastián, 28045 Colima, México.

Ion channels are integral membrane proteins which facilitate rapid transport of small ions into and out of the cell and between organelles and cytosol. Cytolytic lymphocytes including natural killer (NK) cells principally kill virus-infected and cancer cells by releasing cytolytic granules within the immunological synapse, formed between target and effector cells. This process strongly depends on Ca2+ signaling, which in human NK cells is controlled by the phospholipase C (PLCγ)/inositol-1,4,5-triphospate receptor (IP3R)/calcium release-activated calcium channel (CRAC) axis.

View Article and Find Full Text PDF

Cell adhesion molecule ITGB2 promotes CAR-T cell therapy in B-cell malignancies.

Cancer Lett

September 2025

Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Northern Jiangsu Institute of Clinical Medicine, Nanjing Medical University, Huaian, 223300, Jiangsu Province, China; Key Laboratory of Autoimmune Diseases of Huaian City, Huaian, 223300, Jiangsu Pr

CAR-T cell therapy, as a representative technology in cancer immunotherapy, has demonstrated notable success in the treatment of hematologic malignancies; however, a significant proportion of patients fail to achieve sustained remission. Through the analysis of bone marrow sequencing data prior to CD19 CAR-T cell therapy, we identified cellular adhesion as a pivotal factor influencing clinical outcomes. We developed a model to predict B-ALL treatment efficacy based on the core genes associated with cellular adhesion, which was validated in our clinical cohort.

View Article and Find Full Text PDF

Background: The programmed cell death protein 1 (PDCD1 or PD-1) is a key regulatory immune checkpoint and a major target for therapeutic intervention. In oncology, antibodies blocking the PD-1 pathway are used to activate immune cells to promote anti tumour immunity while in immune-mediated inflammatory diseases, PD-1 agonist molecules have the potential to achieve immune suppression. NK cells are a specialised population of innate lymphocytes able to recognize a large range of distressed cells including damaged tissues in autoimmune and inflammatory conditions.

View Article and Find Full Text PDF

New insights to B cell tolerance involving the mechanosensitive ion channel Piezo1.

BMB Rep

September 2025

Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Institute for Immunology and Immunological Diseases, Yonsei Uni

B cell tolerance is critical for preventing autoimmunity, yet the mechanisms by which B cells discriminate self from non-self antigens remain incompletely understood. While early findings emphasize the role of classical antigen-mediated BCR signaling strength by varying antigen formats, emerging evidence highlights the importance of mechanical cues during antigen recognition. This review explores how mechanosensitive ion channels, particularly Piezo1, contribute to B cell activation and tolerance by integrating physical forces at the immune synapse.

View Article and Find Full Text PDF

Despite the efficacy of chimeric antigen receptor (CAR)-T cells in selected hematological malignancies, further improvement on CAR-T designs is still desirable. We hypothesize that modifying the CAR structure to enhance immunological synapse (IS) stabilization and CAR target-binding may be a feasible strategy. Here we show that the membrane protein, CD99, is critical for IS formation in T cells by mediating actin-microtubule interaction.

View Article and Find Full Text PDF