98%
921
2 minutes
20
CuO nanoparticles (NPs) based graphene oxide (CuO/GO) composites with different CuO NPs loading amount as well as pure CuO NPs with different hydrothermal temperatures were synthesized using a hydrothermal method. Transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and Raman spectroscopy were employed to characterize the morphology and structures of our samples. The influence of hydrothermal temperature, GO sheet, and loading amount of CuO on particle size and structure of CuO was systemically investigated. The nonenzymatic biosensing properties of CuO/GO composites and CuO NPs toward glucose were studied based on glassy carbon electrode (GCE). The sensing properties of CuO NPs were improved after loading on GO sheets. The CuO/GO composites with saturated loading of the CuO NPs exhibited the best nonenzymatic biosensing behavior. It exhibited a sensitivity of 262.52 μA mM(-1) cm(-2) to glucose with a 0.69 μM detection limit (S/N = 3) and a linear range from 2.79 μM to 2.03 mM under a working potential of +0.7 V. It also showed outstanding long term stability, good reproducibility, excellent selectivity, and accurate measurement in real serum sample. It is believed that CuO/GO composites show good promise for further application on nonenzymatic glucose biosensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am403508f | DOI Listing |
Environ Sci Pollut Res Int
September 2025
A.O. Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences, Sevastopol, Russia.
The emergence of new types of pollutants and the increase of anthropogenic load on the environment provoked an increased interest of researchers to study the toxic effects of pollutants on living organisms. This study is devoted to investigate the physiological response of the Black Sea phytoplankton community to the effects of ZnO, CuO and TiO nanoparticles (NPs) of different concentrations by creating in vitro model microcosms. Trends of changes in the ratio between phytoplankton groups (cyanobacteria-picoeukaryotic algae-nano-microphytoplankton), species composition, growth rates and functional state of cells under the influence of the studied nanoparticles were revealed.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Department of Physics, University of Lucknow, Lucknow, India; Department of Physics and Astrophysics, University of Delhi, India. Electronic address:
Background: Water contamination is a global challenge, primarily due to heavy metal ions like lead (Pb), iron (Fe), cadmium (Cd), andmercury (Hg) as well as dyes. These pollutants enter the ecosystem from industrial waste and runoff, accumulate in the environment and pose a high risk to humans, animals and plants. Various sensors, such as colorimetric sensors, and electrochemical sensors have been developed to detect these ions and dyes.
View Article and Find Full Text PDFRSC Adv
August 2025
Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax P.O. Box 1177 3018 Sfax Tunisia.
Numerous studies have demonstrated the antiproliferative potential of copper-based nanoparticles (Cu-based NPs) in antibacterial and anticancer applications. This study investigates how thermal annealing influences the structural, optical, and antibacterial properties of Cu-based NPs. X-ray diffraction (XRD) analysis revealed a monoclinic CuSO(OH) phase for the as-prepared powder, and monoclinic CuO phase after annealing, alongside a notable increase in crystallite size from 8.
View Article and Find Full Text PDFDrug Deliv Transl Res
August 2025
Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, 1 El Khartoum Square, PO Box 21521, Alexandria, Egypt.
Biopolymer-based composite films were primed by incorporating alginate and zein natural polymers using a solution-casting method and superbly assisted by eco-friendly prepared copper oxide nanoparticles (CuO NPs). The influence of the addition method of CaCl as a crosslinker and CuO NPs loading content (0.1, 0.
View Article and Find Full Text PDFNanoscale Adv
August 2025
Department of Chemistry, Faculty of Science, Research Center for Advanced Materials Science (RCAMS), King Khalid University P. O. Box 960 Abha 61421 Saudi Arabia.
The continuous increase in population and industrial activity in several areas, including textiles, leather, plastics, cosmetics, and food processing, produces harmful organic pollutants such as azo dyes, which are harmful to aquatic life and cause water pollution. The remediation of these dyes using photo-responsive metallic nanoparticles (NPs) has become a viable technique for the purification of water. This study synthesized ZnO NPs, CuO NPs, and ZnO/CuO nanocomposites using leaf extract.
View Article and Find Full Text PDF