98%
921
2 minutes
20
Objectives: Enteroaggregative Escherichia coli (EAEC) was recently reported as a major diarrheagenic pathogen in infant and adult travelers, both in developing and developed countries. EAEC strains are known to be highly resistant to antibiotics including quinolones. Therefore in this study we have determined the various mechanisms of quinolone resistance in EAEC strains isolated in Korea.
Methods: For 26 EAEC strains highly resistant to fluoroquinolone, minimal inhibitory concentrations for fluoroquinolones were determined, mutations in the quinolone target genes were identified by PCR and sequencing, the presence of transferable quinolone resistance mechanism were identified by PCR, and the contribution of the efflux pump was determined by synergy tests using a proton pump inhibitor. The expression levels of efflux pump-related genes were identified by relative quantification using real-time PCR.
Results: Apart from two, all tested isolates had common mutations on GyrA (Ser83Leu and Ser87Gly) and ParC (Ser80Gln). Isolates EACR24 and EACR39 had mutations that have not been reported previously: Ala81Pro in ParC and Arg157Gly in GyrA, respectively. Increased susceptibility of all the tested isolates to ciprofloxacin and norfloxacin in the presence of the pump inhibitor implies that efflux pumps contributed to the resistance against fluoroquinolones. Expression of the efflux pump-related genes, tolC, mdfA, and ydhE, were induced in isolates EACR 07, EACR 29, and EACR 33 in the presence of ciprofloxacin.
Conclusion: These results indicate that quinolone resistance of EAEC strains mainly results from the combination of mutations in the target enzyme and an increased expression of efflux pump-related genes. The mutations Ala81Pro in ParC and Arg157Gly in GyrA have not been reported previously the exact influence of these mutations should be investigated further.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3747663 | PMC |
http://dx.doi.org/10.1016/j.phrp.2012.11.002 | DOI Listing |
Arch Microbiol
September 2025
División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Zip Code 36050, Guanajuato, Mexico.
Plasmids are fundamental to molecular biology and biotechnology, playing a crucial role in bacterial evolution. Some plasmids are linked to complex cellular dynamics, including pathogenicity islands, antibiotic resistance, and gene mobilization. This study reports the isolation and sequencing of two cryptic plasmids with different electrophoretic mobilities from the Escherichia coli clinical isolate O55.
View Article and Find Full Text PDFInt J Phytoremediation
September 2025
Innovative Food Technologies Development Application and Research Center, Gölköy Campus Bolu, Bioenvironment and Green Synthesis Research Group, Bolu Abant İzzet Baysal University, Bolu, Türkiye.
This study presents an eco-friendly approach for the green synthesis of manganese oxide nanoparticles (MnONPs) using () (einkorn wheat) seed extract as a reducing and stabilizing agent. The synthesized MnONPs were characterized by UV-Vis, XRD, FTIR, SEM-EDX, BET, and zeta potential analyses, which confirmed their crystalline nature, spherical morphology, and mesoporous structure with a surface area of 41.50 m/g.
View Article and Find Full Text PDFACS Synth Biol
September 2025
The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China.
Human Bone Morphogenetic Protein-2 (hBMP-2) serves as a critical regulator in bone and cartilage formation; however, its industrial application is hindered by its inherent tendency to form inclusion bodies in prokaryotic expression systems. To address this issue, we established a recombinant hBMP-2 (rhBMP-2) expression system using the pCold II plasmid and the SHuffle T7 strain. We explored several strategies to enhance the solubility of rhBMP-2, including coexpression with molecular chaperones, vesicle-mediated secretory expression, fusion expression with synthetic intrinsically disordered proteins (SynIDPs), and fusion expression with small-molecule peptide tags.
View Article and Find Full Text PDFNat Commun
September 2025
Theoretical and Computational Systems Biology Program, Institute for Integrative Systems Biology (I2SysBio), CSIC-UV, Paterna, Spain.
Bacteria often encounter physico-chemical stresses that disrupt division, leading to filamentation, where cells elongate without dividing. Although this adaptive response improves survival, it also exposes filaments to significant mechanical strain, raising questions about the mechanochemical feedback in bacterial systems. In this study, we investigate how mechanical strain modifies the geometry of bacterial filaments and influences the Min oscillatory system, a reaction-diffusion network central to division in Escherichia coli.
View Article and Find Full Text PDFACS Infect Dis
September 2025
Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China.
The emergence of multidrug-resistant (MDR) poses a significant threat to global public health, necessitating alternative therapeutic strategies. In this study, we isolated and characterized a novel lytic bacteriophage (phage), vB_EcoM_51, from poultry farm sewage and evaluated its potential against MDR . Transmission electron microscopy revealed that the phage exhibits morphological features typical of the family, including a polyhedral head (∼66.
View Article and Find Full Text PDF