Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The RON gene encodes a tyrosine kinase receptor for macrophage-stimulating protein. A constitutively active isoform that arises by skipping of exon 11 is expressed in carcinomas and contributes to an invasive phenotype. However, a high proportion of the mRNA expressed from the endogenous gene, or from transfected minigenes, appears to retain introns 10 and 11. It is not known whether this represents specific repression or the presence of weak splicing signals. We have used chimeric pre-mRNAs spliced in vitro to investigate the reason for intron retention. A systematic test showed that, surprisingly, the exon sequences known to modulate exon 11 skipping were not limiting, but the 3' splice site regions adjacent to exons 11 and 12 were too weak to support splicing when inserted into a globin intron. UV-crosslinking experiments showed binding of hnRNP F/H just 5' of these regions, but the hnRNP F/H target sequences did not mediate inhibition. Instead, the failure of splicing is linked to weak binding of U2AF65, and spliceosome assembly stalls prior to formation of any of the ATP-dependent complexes. We discuss mechanisms by which U2AF65 binding is facilitated in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3796505PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0077208PLOS

Publication Analysis

Top Keywords

intron retention
8
splice site
8
hnrnp f/h
8
retention alternatively
4
alternatively spliced
4
spliced region
4
region ron
4
weak
4
ron weak
4
weak splice
4

Similar Publications

Background: Stickler syndrome (STL) is a group of related connective tissue disorders characterized by heterogeneous clinical presentations with varying degrees of orofacial, ocular, skeletal, and auditory abnormalities. However, this condition is difficult to diagnose on the basis of clinical features because of phenotypic variability. Thus, expanding the variant spectrum of this disease will aid in achieving a firm definitive diagnosis of STL.

View Article and Find Full Text PDF

Alternative splicing drives a dynamic transcriptomic response during programmed cell death.

Microb Cell

August 2025

Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, N.L, Mexico.

Programmed cell death (PCD) in unicellular organisms is not well characterized. This study investigated the transcriptomic response of to G418-induced PCD, focusing on the role of alternative splicing (AS). RNA sequencing revealed extensive transcriptional changes, affecting approximately 70% of annotated genes over six hours of treatment.

View Article and Find Full Text PDF

Loss-of-function mutations in the gene cause β-catenin deficiency, resulting in CTNNB1 syndrome, a rare neurodevelopmental disorder characterized by motor and cognitive impairments. Given the wide variety of mutations across and its dosage sensitivity, a mutation-independent therapeutic approach that preserves endogenous gene regulation is critically needed. This study introduces spliceosome-mediated RNA -splicing as a novel approach to restore β-catenin production.

View Article and Find Full Text PDF

Immunotherapy benefits only a subset of lung cancer patients, and the molecular determinants of variable outcomes remain unclear. Using long-read RNA-sequencing we mapped the landscape of alternative RNA splicing in human primary lung adenocarcinomas. We identified over 180,000 full-length mRNA isoforms, more than half of which were novel and many of which occurred in immune-related genes, particularly within the type I interferon response pathway.

View Article and Find Full Text PDF