Meta-analysis of molecular response of kidney to ischemia reperfusion injury for the identification of new candidate genes.

BMC Nephrol

Division of Experimental and Translational Genetics, Department of Pediatrics, Children's Mercy Hospitals and Clinics, University of Missouri School of Medicine, Kansas City, MO, USA.

Published: October 2013


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Accumulated to-date microarray data on ischemia reperfusion injury (IRI) of kidney represent a powerful source for identifying new targets and mechanisms of kidney IRI. In this study, we conducted a meta-analysis of gene expression profiles of kidney IRI in human, pig, rat, and mouse models, using a new scoring method to correct for the bias of overrepresented species. The gene expression profiles were obtained from the public repositories for 24 different models. After filtering against inclusion criteria 21 experimental settings were selected for meta-analysis and were represented by 11 rat models, 6 mouse models, and 2 models each for pig and human, with a total of 150 samples. Meta-analysis was conducted using expression-based genome-wide association study (eGWAS). The eGWAS results were corrected for a rodent species bias using a new weighted scoring algorithm, which favors genes with unidirectional change in expression in all tested species.

Results: Our meta-analysis corrected for a species bias, identified 46 upregulated and 1 downregulated genes, of which 26 (55%) were known to be associated with kidney IRI or kidney transplantation, including LCN2, CCL2, CXCL1, HMOX1, ICAM1, ANXA1, and TIMP1, which justified our approach. Pathway analysis of our candidates identified "Acute renal failure panel" as the most implicated pathway, which further validates our new method. Among new IRI candidates were 10 novel (<5 published reports related to kidney IRI) and 11 new candidates (0 reports related to kidney IRI) including the most prominent candidates ANXA2, CLDN4, and TYROBP. The cross-species expression pattern of these genes allowed us to generate three workable hypotheses of kidney IRI, one of which was confirmed by an additional study.

Conclusions: Our first in the field kidney IRI meta-analysis of 150 microarray samples, corrected for a species bias, identified 10 novel and 11 new candidate genes. Moreover, our new meta-analysis correction method improved gene candidate selection by identifying genes that are model and species independent, as a result, function of these genes can be directly extrapolated to the disease state in human and facilitate translation of potential diagnostic or therapeutic properties of these candidates to the bedside.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4016589PMC
http://dx.doi.org/10.1186/1471-2369-14-231DOI Listing

Publication Analysis

Top Keywords

kidney iri
12
ischemia reperfusion
8
reperfusion injury
8
iri kidney
8
gene expression
8
expression profiles
8
mouse models
8
species bias
8
kidney
6
meta-analysis
5

Similar Publications

Renal ischemic disease represents a severe clinical pathological condition commonly observed in acute kidney injury (AKI), renal transplantation, and kidney surgery. It leads to renal tubular epithelial cell damage, inflammatory responses, and cell death, potentially progressing to chronic kidney disease (CKD) or even renal failure, significantly impairing patients' quality of life and survival rates. Current therapeutic strategies for renal ischemia-reperfusion injury (IRI) include pharmacological interventions, cell therapy, and gene therapy, yet their efficacy remains limited and may be accompanied by adverse effects.

View Article and Find Full Text PDF

Sympathetic Activation Promotes Kidney Fibrosis in Mice via Macrophage-Derived N2ICD-Enriched Extracellular Vesicles.

Adv Sci (Weinh)

September 2025

Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center fo

Persistent overactivation of the renal sympathetic nervous system drives kidney inflammation and fibrosis. Macrophages contribute to fibrogenesis by secreting various pro-fibrogenic mediators. However, whether the sympathetic nervous system regulates renal fibrosis by modulating macrophage-fibroblast interaction remains unclear.

View Article and Find Full Text PDF

Introduction: Ischaemia reperfusion injury (IRI) is inevitable in kidney transplantation and negatively affects patient and graft outcomes. Anaesthetic conditioning (AC) refers to the use of anaesthetic agents to mitigate IRI. AC is particularly associated with volatile anaesthetic (VA) agents and to a lesser extent to intravenous agents like propofol.

View Article and Find Full Text PDF

Renal ischemia-reperfusion injury (IRI) remains a major challenge impacting graft survival following transplantation. During the ischemic phase, mitochondrial dysfunction leads to adenosine triphosphate (ATP) depletion and calcium overload. Upon reperfusion, reactive oxygen species (ROS) are generated, exacerbating mitochondrial damage and triggering inflammatory responses.

View Article and Find Full Text PDF

Polytrauma is a critical global health concern characterized by immune dysregulation and a high risk of multiple organ dysfunction syndrome (MODS). Early molecular mechanisms linking trauma severity to organ injury are poorly understood. We used two rat blast-polytrauma models: a tourniquet-induced ischemia/reperfusion injury (tIRI) model and a non-ischemia/reperfusion injury (non-IRI) model.

View Article and Find Full Text PDF