Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Intratumour heterogeneity is a longstanding field of focus for both researchers and clinicians. It refers to the diversity amongst cells within the same tumour. Two major hypotheses have attempted to explain the existence of intratumour heterogeneity: (i) the clonal evolution (CE) theory and (ii) the cancer stem cell (CSC) model. CE theory emphasizes the evolutionary biological characteristics of the tumour, underscoring the initiation and progression of the disease. In contrast, the CSC model focuses on stem cell differentiation into distinct functions in order to stabilize the tumour microenvironment. Here we consider single-cell sequencing (SCS) as a newly developed technique for application to the investigation of intratumour heterogeneity and assess its relevance within research and clinical environments. Early detection of rare tumour cells, monitoring of circulating tumour cells (CTCs) and control of the occurrence of drug resistance are important goals in early diagnosis, prognosis prediction and individualized medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3854033 | PMC |
http://dx.doi.org/10.1038/aja.2013.106 | DOI Listing |