Halogen interactions in protein-ligand complexes: implications of halogen bonding for rational drug design.

J Chem Inf Model

Department of Chemistry and Biochemistry, Northern Arizona University, P.O. Box 5698, Flagstaff, Arizona 86011-5698, United States.

Published: November 2013


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Halogen bonding interactions between halogenated ligands and proteins were examined using the crystal structures deposited to date in the PDB. The data was analyzed as a function of halogen bonding to main chain Lewis bases, viz. oxygen of backbone carbonyl and backbone amide nitrogen. This analysis also examined halogen bonding to side-chain Lewis bases (O, N, and S) and to the electron-rich aromatic amino acids. All interactions were restricted to van der Waals radii with respective atoms. The data reveals that while fluorine and chlorine have strong tendencies favoring interactions with the backbone Lewis bases at glycine, the trend is not restricted to the achiral amino acid backbone for larger halogens. Halogen side-chain interactions are not restricted to amino acids containing O, N, and S as Lewis bases. Electron-rich aromatic amino acids host a high frequency of halogen bonds as does Leu. A closer examination of the latter hydrophobic side chain reveals that the "propensity of interactions" of halogen ligands at this oily residue is an outcome of strong classical halogen bonds with Lewis bases in the vicinity. Finally, an examination of Θ1 (C-X···O and C-X···N) and Θ2 (X···O-Z and X···N-Z) angles reveals that very few ligands adopt classical halogen bonding angles, suggesting that steric and other factors may influence these angles. The data is discussed in the context of ligand design for pharmaceutical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ci400257kDOI Listing

Publication Analysis

Top Keywords

halogen bonding
20
lewis bases
20
amino acids
12
halogen
10
bases electron-rich
8
electron-rich aromatic
8
aromatic amino
8
interactions restricted
8
halogen bonds
8
classical halogen
8

Similar Publications

Recent advances in two-dimensional (2D) magnetic materials have promoted significant progress in low-dimensional magnetism and its technological applications. Among them, atomically thin chromium trihalides (CrX with X = Cl, Br, and I) are among the most studied 2D magnets due to their unique magnetic properties. In this work, we employ density functional theory calculations to investigate the mechanical and electronic properties of CrX monolayers in the presence of in-plane uniaxial strain.

View Article and Find Full Text PDF

The structure of the 1:1 cocrystal formed between 1-bromo-3,5-di-nitro-benzene and ,-di-methyl-pyridin-4-amine that features a C-Br⋯N halogen bond is reported. The cocrystal, CHBrNO·CHN, crystalizes in the monoclinic space group 2/ with = 4. Hirshfeld surface analysis and inter-molecular inter-action energies within the cocrystal structure are reported.

View Article and Find Full Text PDF

Computationally Efficient Yet Quantitatively Accurate Scaled MP2 Protocols for the Prediction of Weak Interaction Energies in Complex Biological Systems.

ACS Omega

September 2025

Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510 Ciudad de Mexico, Mexico.

In this study, we introduce a set of novel computational strategies based on second-order Mo̷ller-Plesset perturbation theory (MP2), enhanced through acceleration techniques, such as the resolution of the identity (RI). These approaches are further refined via spin-component scaling (SCS), following Grimme's methodology, and are specifically calibrated for the quantitatively accurate prediction of weak interaction energiesinteractions that play a critical role in biological systems. Among the developed methods, three variants exhibit outstanding performance, surpassing the accuracy of several state-of-the-art, nondynamical electronic structure techniques.

View Article and Find Full Text PDF

The persistent threat of pathogenic microorganisms demands the development of innovative scaffolds with dual antibacterial and antifungal activities. Herein, we report the synthesis and characterization of a novel series of benzothiazole-thiazole hybrids (4a-4f) a three-step route, confirmed by NMR and MS analyses. The compounds were screened against Gram-positive, Gram-negative, mycobacterial, and fungal strains using disk diffusion and REMA assays.

View Article and Find Full Text PDF

BN-fused aromatic compounds have garnered significant attention due to their unique electronic structures and exceptional photophysical properties, positioning them as highly promising candidates for applications in organic optoelectronics. However, the regioselective synthesis of BN isomers remains a formidable challenge, primarily stemming from the difficulty in precisely controlling reaction sites, limiting structural diversity and property tunability. Herein, we propose a regioselective synthetic strategy that employs 2,1-BN-naphthalene derivatives, wherein selective activation of N-H and C-H bonds is achieved in conjunction with -halogenated phenylboronic acids.

View Article and Find Full Text PDF