A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Linear dynamic models for classification of single-trial EEG. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This paper investigates the use of linear dynamic models (LDMs) to improve classification of single-trial EEG signals. Existing dynamic classification of EEG uses discrete-state hidden Markov models (HMMs) based on piecewise-stationary assumption, which is inadequate for modeling the highly non-stationary dynamics underlying EEG. The continuous hidden states of LDMs could better describe this continuously changing characteristic of EEG, and thus improve the classification performance. We consider two examples of LDM: a simple local level model (LLM) and a time-varying autoregressive (TVAR) state-space model. AR parameters and band power are used as features. Parameter estimation of the LDMs is performed by using expectation-maximization (EM) algorithm. We also investigate different covariance modeling of Gaussian noises in LDMs for EEG classification. The experimental results on two-class motor-imagery classification show that both types of LDMs outperform the HMM baseline, with the best relative accuracy improvement of 14.8% by LLM with full covariance for Gaussian noises. It may due to that LDMs offer more flexibility in fitting the underlying dynamics of EEG.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2013.6610628DOI Listing

Publication Analysis

Top Keywords

linear dynamic
8
dynamic models
8
classification single-trial
8
single-trial eeg
8
improve classification
8
gaussian noises
8
noises ldms
8
eeg
7
classification
6
ldms
6

Similar Publications