Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Dentin matrix protein 1 (DMP1) is an acidic extracellular matrix protein expressed mainly in bone and dentin, and is a member of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family. The DMP1 gene, however, appears to evolve rapidly in comparison with other SIBLING genes, even though such functionally important molecules usually evolve more slowly than less important ones. The purpose of this study was to identify and characterize an ortholog of the DMP1 gene in an amphibian (Xenopus laevis; X. laevis) to clarify molecular evolutionary alterations in DMP1 associated with calcified tissues in tetrapods. Furthermore, we analyzed the mRNA expression of this gene to elucidate its functional change in bone and developing tooth germ in comparison with amniote DMP1s. The similarities of the deduced amino acid sequence of X. laevis DMP1 to that of the corresponding amniote proteins were low, although they did share several unique features specific to DMP1 and have similar properties. Expression of X. laevis DMP1 mRNA was predominant in osteocytes and odontoblasts, but only transiently observed in ameloblasts, as in amniotes. These results suggest that DMP1 has conserved several functions during tetrapod evolution. This indicates that continuity of biochemical properties has been more important in maintaining DMP1 functionality than that of the sequence of amino acid residues, which has undergone change over the course of molecular evolution.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jez.b.22529DOI Listing

Publication Analysis

Top Keywords

matrix protein
12
dmp1
9
dentin matrix
8
xenopus laevis
8
dmp1 gene
8
amino acid
8
laevis dmp1
8
laevis
5
identification characterization
4
characterization expression
4

Similar Publications

Lymphangioleiomyomatosis (LAM) is a rare lung disease caused by hyperactivation of the mechanistic/mammalian target of rapamycin 1 (mTORC1) growth pathway in a subset of mesenchymal lung cells. Histopathologically, LAM lesions have been described as immature smooth muscle-like cells positive for the immature melanocytic marker HMB45/PMEL/gp100 and phosphorylated ribosomal protein S6 (pS6). Advances in single cell sequencing (scRNA-seq) technology allowed us to group LAM cells according to their expression of cancer stem cell (CSC) genes and identify three clusters: a high CSC-like state (SLS), an intermediate state, and a low CSC-like inflammatory state (IS).

View Article and Find Full Text PDF

Distinct cellular and molecular mechanisms contribute to the specificity of the two Drosophila melanogaster chitin synthases in chitin deposition.

PLoS Genet

September 2025

Institut de Biologia Molecular de Barcelona, IBMB-CSIC, Department of Cells and Tissues, Parc Científic de Barcelona, Barcelona, Spain.

Chitin is a major component of arthropod extracellular matrices, including the exoskeleton and the midgut peritrophic matrix. It plays a key role in the development, growth and viability of insects. Beyond the biological importance of this aminopolysaccharide, chitin also receives considerable attention for its practical applications in medicine and biotechnology, as it is a superior biopolymer with excellent physicochemical and mechanical properties.

View Article and Find Full Text PDF

Enoxaparin sodium (ES), a low molecular weight heparin derivative, has recently been recognized for its diverse biological activities. In particular, the ability of heparin to modulate inflammation has been utilized to enhance the biocompatibility of bone implant materials. In this study, we utilized poly (methyl methacrylate) (PMMA), a drug loading bone implant material, as a matrix and combined this with enoxaparin sodium (ES) to create enoxaparin sodium PMMA cement (ES-PMMA) to investigate the regulatory effects of ES on inflammatory responses in bone tissue from an animal model.

View Article and Find Full Text PDF

Platelet-Rich Fibrin (PRF) is an autologous matrix rich in platelets, leukocytes, and growth factors that support tissue regeneration. Enhancing its structural and biological properties through biomaterial supplementation may improve clinical outcomes. This study evaluated the effects of adding hyaluronic acid (HA) and collagen to PRF on growth factor release and mechanical strength.

View Article and Find Full Text PDF

c-Jun N-terminal kinases (JNKs), a subfamily of mitogen-activated protein kinases (MAPKs), are key mediators of cellular responses to environmental stress, inflammation, and apoptotic signals. The three isoforms-JNK1, JNK2, and JNK3 exhibit both overlapping and isoform-specific functions. While JNK1 and JNK2 are broadly expressed across tissues and regulate immune signaling, cell proliferation, and apoptosis, JNK3 expression is largely restricted to the brain, heart, and testis, where it plays a crucial role in neuronal function and survival.

View Article and Find Full Text PDF