98%
921
2 minutes
20
3D photonic crystals, such as opals, have been shown to have a high potential to increase the efficiency of solar cells by enabling advanced light management concepts. However, methods which comply with the demands of the photovoltaic industry for integration of these structures, i. e. the fabrication in a low-cost, fast, and large-scale manner, are missing up to now. In this work, we present the spray coating of a colloidal suspension on textured substrates and subsequent drying. We fabricated opaline films of much larger lateral dimensions and in much shorter times than what is possible using conventional opal fabrication methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.21.00A528 | DOI Listing |
Int J Biol Macromol
September 2025
Aerofybers Technologies SL. Parc Científic (UV), Carrer del Catedràtic Agustín Escardino Benlloch, 9, 46980 Paterna, Valencia, Spain; Food Safety and Preservation Department, IATA-CSIC, Carrer del Catedràtic Agustín Escardino 7, 46980 Paterna, Valencia, Spain. Electronic address: isaacbg@aerofy
Highly porous, lightweight aerogels were developed based on cellulose extracted via industrial Kraft treatments from vine shoot (S) with the aim of valorising a currently generated waste and eucalyptus (EU) to reduce seasonality. In order to enhance their hydrophobicity and mechanical resistance, a poly-lactic acid (PLA) coating was applied through two different methodologies: spray- and pipette-coating. The resulting materials presented low densities (23-80 kg/m) with improved mechanical performance, revealing a notable augment in compressive strength after PLA coating (up to 20-fold increase, reaching 1.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211100, P. R. China.
Aircraft confronting harsh meteorological conditions and radar detection environments during high-altitude flights face significant risks, which can threaten flight safety. This study designs and fabricates a novel Jerusalem cross-inspired Frequency Selective Surface (FSS). Initially, rGO powder with an optimized reduction degree is synthesized as the conductive filler.
View Article and Find Full Text PDFSmall
September 2025
Institute of Interfaces and Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany.
Repellent surfaces provide resistance to biofouling, ice formation, bacteria adhesion, or corrosion. Inspired by the hierarchical structure of the lotus leaf, such surfaces minimize water adhesion through micro- and nanostructuring. Conventional fabrication methods to mimic the lotus leaf often involve problematic fluorinated compounds, sophisticated preparation conditions, or lack mechanical robustness.
View Article and Find Full Text PDFACS Appl Bio Mater
September 2025
School of Textile Science and Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China.
The problem of hospital-acquired infections arising from inadequate antimicrobial and antibiofilm performance in medical textiles is an increasingly urgent threat to public health. The dual strategy combining superhydrophobic surfaces with aPDT exhibits potent antibacterial efficacy and barely triggers the risk of antimicrobial resistance, but still encounters significant challenges, including intricate fabrication methods and narrow spectral absorption of single-photosensitizer (PS) systems. A superhydrophobic-photodynamic dual antimicrobial polyester fabric is developed herein for medical applications to address these challenges.
View Article and Find Full Text PDFChem Asian J
September 2025
Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh, 491001, India.
Self-healing polymeric coatings represent a transformative class of smart materials capable of autonomously or stimuli-responsively repairing mechanical or environmental damage, thereby significantly extending the operational lifespan of protected substrates. This review systematically elucidates the underlying mechanisms and chemistries enabling self-healing behavior, encompassing both extrinsic strategies such as microcapsules, microvascular networks, and corrosion inhibitor reservoirs and intrinsic approaches based on dynamic covalent (e.g.
View Article and Find Full Text PDF