A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Recommendations for using msBayes to incorporate uncertainty in selecting an abc model prior: a response to oaks et Al. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Prior specification is an essential component of parameter estimation and model comparison in Approximate Bayesian computation (ABC). Oaks et al. present a simulation-based power analysis of msBayes and conclude that msBayes has low power to detect genuinely random divergence times across taxa, and suggest the cause is Lindley's paradox. Although the predictions are similar, we show that their findings are more fundamentally explained by insufficient prior sampling that arises with poorly chosen wide priors that critically undersample nonsimultaneous divergence histories of high likelihood. In a reanalysis of their data on Philippine Island vertebrates, we show how this problem can be circumvented by expanding upon a previously developed procedure that accommodates uncertainty in prior selection using Bayesian model averaging. When these procedures are used, msBayes supports recent divergences without support for synchronous divergence in the Oaks et al. data and we further present a simulation analysis that demonstrates that msBayes can have high power to detect asynchronous divergence under narrower priors for divergence time. Our findings highlight the need for exploration of plausible parameter space and prior sampling efficiency for ABC samplers in high dimensions. We discus potential improvements to msBayes and conclude that when used appropriately with model averaging, msBayes remains an effective and powerful tool.

Download full-text PDF

Source
http://dx.doi.org/10.1111/evo.12241DOI Listing

Publication Analysis

Top Keywords

msbayes conclude
8
power detect
8
prior sampling
8
model averaging
8
msbayes
6
prior
5
divergence
5
recommendations msbayes
4
msbayes incorporate
4
incorporate uncertainty
4

Similar Publications