Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Negatively charged DNA can form extremely stable complexes with positively charged ions. These counterions are very difficult to remove from DNA; therefore, little is known about DNA behavior in their deficiency. We investigated whether removal of counterions from the strongly bound counterion layer would elicit any novel DNA properties or behaviors. In order to remove the tightly bound counterions, we used dialysis against deionized water in the presence of a strong (0.6 kV/cm) electric field. The electric field promoted the dissociation of the DNA-counterion complexes, while dialysis facilitated irreversible partitioning of counterions and DNA. Counterintuitively, when deprived of counterions, DNA precipitated from the solution into amorphous aggregates. The aggregates remained stable even when the electric field was turned off but readily redissolved when counterions were reintroduced. The phenomenon is likely explained by attraction of like-charged DNA polyions due to entropic-stabilization of condensed counterion layers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac402645n | DOI Listing |