Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
DNA methylation and hydroxymethylation have been implicated in normal development and differentiation, but our knowledge is limited about the genome-wide distribution of 5-methylcytosine (5 mC) and 5-hydroxymethylcytosine (5 hmC) during cellular differentiation. Using an in vitro model system of gradual differentiation of human embryonic stem (hES) cells into ventral midbrain-type neural precursor cells and terminally into dopamine neurons, we observed dramatic genome-wide changes in 5 mC and 5 hmC patterns during lineage commitment. The 5 hmC pattern was dynamic in promoters, exons and enhancers. DNA hydroxymethylation within the gene body was associated with gene activation. The neurogenesis-related genes NOTCH1, RGMA and AKT1 acquired 5 hmC in the gene body and were up-regulated during differentiation. DNA methylation in the promoter was associated with gene repression. The pluripotency-related genes POU5F1, ZFP42 and HMGA1 acquired 5 mC in their promoters and were down-regulated during differentiation. Promoter methylation also acted as a locking mechanism to maintain gene silencing. The mesoderm development-related genes NKX2-8, TNFSF11 and NFATC1 acquired promoter methylation during neural differentiation even though they were already silenced in hES cells. Our findings will help elucidate the molecular mechanisms underlying lineage-specific differentiation of pluripotent stem cells during human embryonic development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/hmg/ddt453 | DOI Listing |