98%
921
2 minutes
20
Complement blockade by eculizumab is clinically effective in hemolytic paroxysmal nocturnal hemoglobinuria. However, the response is variable and some patients remain dependent on red blood cell transfusions. In 72 patients with hemolytic paroxysmal nocturnal hemoglobinuria on eculizumab we tested the hypothesis that response may depend on genetic polymorphisms of complement-related genes. We found no correlation between the complement component C3 genotypes and the need for blood transfusions. On the other hand, we found a significant correlation with the HindIII polymorphism of a complement regulatory gene, the complement receptor 1 (CR1) gene. At this locus two co-dominant alleles are known, of which H (common) is associated with high expression, whereas L (rare) is associated with low expression of CR1 on red blood cells. Patients who still needed blood transfusion on eculizumab accounted for 18% of the H/H homozygotes, 33% of the H/L heterozygotes and 68% of the L/L homozygotes (P=0.016). Thus, patients with paroxysmal nocturnal hemoglobinuria who have the L/L genotype are seven times more likely to be sub-optimal responders to eculizumab. Both in vitro and in vivo we found that the CR1 HindIII genotype correlates with the abundance of paroxysmal nocturnal hemoglobinuria red cells that have bound C3, and with the kinetics of C3 binding. These results are consistent with the notion that by affecting C3 binding the CR1 genotype influences the response to eculizumab treatment, and this emerges as a novel example of pharmacogenetics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3912955 | PMC |
http://dx.doi.org/10.3324/haematol.2013.090001 | DOI Listing |
Indian Dermatol Online J
September 2025
Department of Dermatology and Venereology, All India Institute of Medical Sciences, New Delhi, India.
Paroxysmal Nocturnal Hemoglobinuria (PNH) clones are frequently found in hypoplastic myelodysplastic syndromes (hMDS), though less commonly than in aplastic anemia. In contrast, the coexistence of hemolytic PNH with large clones and classical, hypercellular MDS (non-hMDS) is rare and likely underrecognized in clinical practice. Since 2014, 229 MDS patients have been seen at our department.
View Article and Find Full Text PDFImmune Netw
August 2025
Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA.
Complement anaphylatoxins C3a and C5a are potent immunomodulators whose impact extends well beyond their traditional roles in innate immunity. Acting through G protein-coupled receptors C3aR, C5aR1, and C5aR2, these peptides take part in coordinating immune cell recruitment, vascular tone, and tissue remodeling. Yet their functions are deeply context-dependent: while they play essential roles in microbial clearance and immune coordination, their overactivation contributes to immunopathology in a wide range of diseases.
View Article and Find Full Text PDFRinsho Ketsueki
September 2025
Department of Hematology and Oncology, Osaka University Graduate School of Medicine.
Paroxysmal nocturnal hemoglobinuria (PNH) is a rare clonal disorder characterized by complement-mediated hemolysis, thrombosis, and bone marrow failure. Eculizumab (Ecu), a C5 inhibitor, blocks intravascular hemolysis (IVH) and improves prognosis. Ravulizumab and crovalimab have longer half-lives, and reduce treatment burden.
View Article and Find Full Text PDF