Automated method for the rapid and precise estimation of adherent cell culture characteristics from phase contrast microscopy images.

Biotechnol Bioeng

Department of Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom; Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London, United Kingdom.

Published: March 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The quantitative determination of key adherent cell culture characteristics such as confluency, morphology, and cell density is necessary for the evaluation of experimental outcomes and to provide a suitable basis for the establishment of robust cell culture protocols. Automated processing of images acquired using phase contrast microscopy (PCM), an imaging modality widely used for the visual inspection of adherent cell cultures, could enable the non-invasive determination of these characteristics. We present an image-processing approach that accurately detects cellular objects in PCM images through a combination of local contrast thresholding and post hoc correction of halo artifacts. The method was thoroughly validated using a variety of cell lines, microscope models and imaging conditions, demonstrating consistently high segmentation performance in all cases and very short processing times (<1 s per 1,208 × 960 pixels image). Based on the high segmentation performance, it was possible to precisely determine culture confluency, cell density, and the morphology of cellular objects, demonstrating the wide applicability of our algorithm for typical microscopy image processing pipelines. Furthermore, PCM image segmentation was used to facilitate the interpretation and analysis of fluorescence microscopy data, enabling the determination of temporal and spatial expression patterns of a fluorescent reporter. We created a software toolbox (PHANTAST) that bundles all the algorithms and provides an easy to use graphical user interface. Source-code for MATLAB and ImageJ is freely available under a permissive open-source license.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260842PMC
http://dx.doi.org/10.1002/bit.25115DOI Listing

Publication Analysis

Top Keywords

adherent cell
12
cell culture
12
culture characteristics
8
phase contrast
8
contrast microscopy
8
cell
6
automated method
4
method rapid
4
rapid precise
4
precise estimation
4

Similar Publications

Acute lymphoblastic leukemia (ALL) preferentially localizes in the bone marrow (BM) and displays recurrent patterns of medullary and extra-medullary involvement. Leukemic cells exploit their niche for propagation and survive selective pressure by chemotherapy in the BM microenvironment, suggesting the existence of protective mechanisms. Here, we established a three-dimensional (3D) BM mimic with human mesenchymal stromal cells and endothelial cells that resemble vasculature-like structures to explore the interdependence of leukemic cells with their microenvironment.

View Article and Find Full Text PDF

Background: Advanced-stage hepatocellular carcinoma (HCC) with high tumour burden and portal vein tumour thrombus (PVTT) is usually associated with poor survival outcomes. Rapid tumour control usually benefits long-term outcomes, which could be hardly achieved by solely systematic targeted and immunotherapy in current guidelines. Hepatic arterial infusion chemotherapy (HAIC) is reported as an effective intervention for rapid decrease of tumour burden.

View Article and Find Full Text PDF

Sequestration of Plasmodium falciparum-infected erythrocytes (IE) in the microvasculature is a major virulence determinant. While the sequestration of mature stage parasites (trophozoite and schizonts) to vascular endothelium is well established, the conditions that promote ring-stage IE sequestration is less understood. Here, we observed in ring-stage parasites that febrile exposure increased transcript levels of several exported parasite genes involved in the trafficking of the P.

View Article and Find Full Text PDF

Gene signatures predictive of chemotherapeutic response have the potential to extend the reach of precision medicine by allowing oncologists to optimize treatment for individuals. Most published predictive signatures are only capable of predicting response for individual drugs, but most chemotherapy regimens utilize combinations of different agents. We propose a unified framework, called the chemogram, that uses predictive signatures to rank the relative predicted sensitivity of different drugs for individual tumors.

View Article and Find Full Text PDF

Immunoglobulin E (IgE)-mediated cow's milk allergy (CMA) is an immune-mediated reaction to cow's milk (CM). Non-IgE-mediated CMA resolves in most children in the first years of life, whereas IgE-mediated CMA outgrowth is often later or not at all. The exact mechanisms underlying resolution of IgE-mediated CMA are not fully understood.

View Article and Find Full Text PDF