A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A novel class of anticancer compounds targets the actin cytoskeleton in tumor cells. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The actin cytoskeleton is a potentially vulnerable property of cancer cells, yet chemotherapeutic targeting attempts have been hampered by unacceptable toxicity. In this study, we have shown that it is possible to disrupt specific actin filament populations by targeting isoforms of tropomyosin, a core component of actin filaments, that are selectively upregulated in cancers. A novel class of anti-tropomyosin compounds has been developed that preferentially disrupts the actin cytoskeleton of tumor cells, impairing both tumor cell motility and viability. Our lead compound, TR100, is effective in vitro and in vivo in reducing tumor cell growth in neuroblastoma and melanoma models. Importantly, TR100 shows no adverse impact on cardiac structure and function, which is the major side effect of current anti-actin drugs. This proof-of-principle study shows that it is possible to target specific actin filament populations fundamental to tumor cell viability based on their tropomyosin isoform composition. This improvement in specificity provides a pathway to the development of a novel class of anti-actin compounds for the potential treatment of a wide variety of cancers.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-12-4501DOI Listing

Publication Analysis

Top Keywords

novel class
12
actin cytoskeleton
12
tumor cell
12
cytoskeleton tumor
8
tumor cells
8
specific actin
8
actin filament
8
filament populations
8
actin
6
tumor
5

Similar Publications