Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Aphids are among the most destructive pests in temperate climates, causing significant damage on several crops including tomato. We carried out a transcriptomic and proteomic study to get insights into the molecular mechanisms and dynamics of the tomato response to the Macrosyphum euphorbiae aphid.

Results: The time course analysis of aphid infestation indicated a complex, dynamic pattern of gene expression. Several biological functions were affected and genes related to the stress and defence response were the most represented. The Gene Ontology categories of the differentially expressed genes (899) and identified proteins (57) indicated that the tomato response is characterized by an increased oxidative stress accompanied by the production of proteins involved in the detoxification of oxygen radicals. Aphids elicit a defense reaction based on the cross-communication of different hormone-related signaling pathways such as those related to the salicylic acid (SA), jasmonic acid (JA), ethylene and brassinosteroids. Among them, the SA-signaling pathway and stress-responsive SA-dependent genes play a dominant role. Furthermore, tomato response is characterized by a reduced accumulation of photosynthetic proteins and a modification of the expression of various cell wall related genes.

Conclusions: Our work allowed a more comprehensive understanding of the signaling events and the defense dynamics of the tomato response to aphids in a compatible interaction and, based on experimental data, a model of the tomato-aphid molecular interaction was proposed. Considering the rapid advancement of tomato genomics, this information will be important for the development of new protection strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3733717PMC
http://dx.doi.org/10.1186/1471-2164-14-515DOI Listing

Publication Analysis

Top Keywords

tomato response
16
transcriptomic proteomic
8
dynamics tomato
8
response characterized
8
response
6
tomato
6
proteomic analysis
4
analysis compatible
4
compatible tomato-aphid
4
tomato-aphid interaction
4

Similar Publications

Cypriot tomato landraces exhibit partial resistance to Fusarium wilt through distinct jasmonic and salicylic acid-mediated immune responses, offering promising genetic resources for breeding durable tomato cultivars. Fusarium wilt, caused by Fusarium oxysporum f. sp.

View Article and Find Full Text PDF

The utilization of arbuscular mycorrhizal fungi (AMF) and spp. correlates with improved plant nutrition and the stimulation of systemic plant defenses in response to pathogen challenges. Nonetheless, studies examining the effects of AMF colonization and the foliar application of the isolate Tvd44 on viral infection are limited.

View Article and Find Full Text PDF

Effects of fermentation with different lactic acid bacteria on the physicochemical, electronic sensory, and aroma profiles of heat-sterilized tomato juice.

Food Sci Biotechnol

October 2025

Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China.

The current work aimed to investigate the effects of fermentation of , , and on the physicochemical, electronic sensory evaluation, and flavour characteristics of heat-sterilized tomato juice (HTJ). The results indicated that LAB fermentation significantly decreased the pH, sucrose, and glucose, and lactic acid was increased. E-nose and tongue analyses revealed that the response to organic sulfides, terpenoids, and sourness increased after LAB fermentation HS-SPME-GC-MS and OAV revealed that heat-sterilization resulted a significant loss of aroma compounds (38.

View Article and Find Full Text PDF

Many Gram-negative bacterial pathogens deploy type III effector proteins (T3Es) to manipulate host cellular processes and suppress immune responses. Increasing evidence suggests that certain T3Es mimic eukaryotic FFAT (two phenylalanines in an acidic tract) motifs, enabling interaction with vesicle-associated membrane protein (VAMP)-associated proteins (VAPs). These interactions likely help pathogens target and exploit host membrane contact sites.

View Article and Find Full Text PDF

The Mediterranean Basin, a hotspot for tomato production, is one of the most vulnerable areas to climate change, where rising temperatures and increasing soil and water salinization represent major threats to agricultural sustainability. Thus, to understand the molecular mechanisms behind plant responses to this stress combination, an RNA-Seq analysis was conducted on roots and shoots of tomato plants exposed to salt (100 mM NaCl) and/or heat (42°C, 4 h each day) stress for 21 days. The analysis identified over 8000 differentially expressed genes (DEGs) under combined stress conditions, with 1716 DEGs in roots and 2665 in shoots being exclusively modulated in response to this specific stress condition.

View Article and Find Full Text PDF